首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F(1) is the water-soluble portion of the ubiquitous F(1)F(0) ATP synthase. Its structure includes three alpha- and three beta-subunits, arranged as a hexameric disc, plus a gamma-subunit that penetrates the center of the disc akin to an axle. Recently Hausrath et al. (Hausrath, A. C., Grüber, G., Matthews, B. W., and Capaldi, R. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13697-13702) obtained an electron density map of E. coli F(1) at 4.4-A resolution in which the coiled-coil alpha-helices of the gamma-subunit could be seen to extend 45 A from the base of the alpha(3)beta(3) hexamer. Subsequently the structure of a truncated form of the E. coli gamma-subunit in complex with epsilon has been described (Rodgers, A. J. W., and Wilce, M. C. J. (2000) Nat. Struct. Biol. 7, 1051-1054). In the present study the 4.4-A resolution electron density map of E. coli F(1) is re-evaluated in light of the newly available data on the gamma- and epsilon-subunits. It is shown that the map of the F(1) complex is consistent with the structure of the isolated subunits. When E. coli F(1) is compared with that from beef heart, the structures of the E. coli gamma- and epsilon-subunits are seen to be generally similar to their counterparts in the bovine enzyme but to undergo major shifts in position. In particular, the two long, coiled-coil alpha-helices that lie along the axis of F(1) both unwind and rotate. Also the epsilon-subunit rotates around the axis by 81 degrees and undergoes a net translation of about 23 A. It is argued that these large-scale changes in conformation reflect distinct functional states that occur during the rotation of the gamma-subunit within the alpha(3)beta(3) hexamer.  相似文献   

2.
We describe here purification and biochemical characterization of the F(1)F(o)-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F(1)F(o)-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F(1) subunits alpha, beta, gamma, delta, and epsilon and F(o) subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F(1)F(o) holoenzyme or the isolated F(1) moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F(1). After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Deltapsi). A transmembrane proton gradient or sodium ion gradient in the absence of Deltapsi was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na(+)/H(+) antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na(+) ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N'-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.  相似文献   

3.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

4.
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. The F(1) subcomplex has three catalytic nucleotide binding sites, one on each beta subunit, at the interface to the adjacent alpha subunit. In the x-ray structure of F(1) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the three catalytic beta/alpha interfaces differ in the extent of inter-subunit interactions between the C termini of the beta and alpha subunits. At the closed beta(DP)/alpha(DP) interface, a hydrogen-bonding network is formed between both subunits, which is absent at the more open beta(TP)/alpha(TP) interface and at the wide open beta(E)/alpha(E) interface. The hydrogen-bonding network reaches from betaL328 (Escherichia coli numbering) and betaQ441 via alphaQ399, betaR398, and alphaE402 to betaR394, and ends in a cation/pi interaction between betaR394 and alphaF406. Using mutational analysis in E. coli ATP synthase, the functional importance of the beta(DP)/alpha(DP) hydrogen-bonding network is demonstrated. Its elimination results in a severely impaired enzyme but has no pronounced effect on the binding affinities of the catalytic sites. A possible role for the hydrogen-bonding network in coupling of ATP synthesis/hydrolysis and rotation will be discussed.  相似文献   

5.
Recent work has focused on obtaining a better understanding of the three-dimensional structural relationships between the alpha and beta subunits of the F1 moiety and the location of nucleotide binding domains within these subunits. Four types of approach are currently being pursued: X-ray crystallographic, chemical, molecular biological and biochemical. Here we briefly review some of the major conclusions of these studies, and point out some of the problems that must be resolved before an adequate model that relates structure to function in the ATP synthase molecule can be formulated.  相似文献   

6.
Two point mutants of Chlamydomonas reinhardtii, previously found by recombination and complementation analysis to map in the chloroplast atpB gene encoding the beta subunit of the CF1/CF0 ATP synthase, are here shown to be missense alterations near the 5' end of that gene. One mutant (ac-u-c-2-9) has a change at amino acid position 47 of the beta subunit from leucine (CTA) to arginine (CGA). In the second mutant (ac-u-c-2-29), the codon AAA (lysine) is changed to AAC (asparagine) at position 154. Spontaneous revertants of each mutant were isolated that restore the original wild type base pair. Northern analysis of total RNA and in vivo pulse labeling followed by immunoprecipitation reveals that both mutant atpB genes are transcribed and translated normally. However, immunoblots show that the amount of beta subunit associated with mutant thylakoids is only approximately 3% of that seen in wild type and that the CF1 alpha and gamma subunits are missing entirely. The disruption of ATP synthase complex assembly in these mutants is much more severe than in Escherichia coli beta subunit gene point mutants, which retain significant amounts of alpha and beta subunits on their membranes (Noumi, T., Oka, N., Kanazawa, H., and Futai, M. (1986) J. Biol. Chem. 261, 7070-7075). These results support the hypothesis that there are differences in assembly of the ATP synthase between E. coli and chloroplasts. In particular they indicate that beta must be present for assembly of the alpha and gamma subunits of CF1 onto chloroplast membranes.  相似文献   

7.
8.
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.  相似文献   

9.
ATP synthase, the assembly which makes ATP in mitochondria, chloroplasts and bacteria, uses transmembrane proton gradients generated by respiration or photosynthesis to drive the phosphorylation of ADP. Its membrane domain is joined by a slender stalk to a peripheral catalytic domain, F1-ATPase. This domain is made of five subunits with stoichiometries of 3 alpha: 3 beta: 1 gamma: 1 delta: 1 epsilon, and in bovine mitochondria has a molecular mass of 371,000. We have determined the 3-dimensional structure of bovine mitochondrial F1-ATPase to 6.5 A resolution by X-ray crystallography. It is an approximately spherical globule 110 A in diameter, on a 40 A stem which contains two alpha-helices in a coiled-coil. This stem is presumed to be part of the stalk that connects F1 with the membrane domain in the intact ATP synthase. A pit next to the stem penetrates approximately 35 A into the F1 particle. The stem and the pit are two examples of the many asymmetric features of the structure. The central element in the asymmetry is the longer of the two alpha-helices in the stem, which extends for 90 A through the centre of the assembly and emerges on top into a dimple 15 A deep. Features with threefold and sixfold symmetry, presumed to be parts of homologous alpha and beta subunits, are arranged around the central rod and pit, but the overall structure is asymmetric. The central helix provides a possible mechanism for transmission of conformational changes induced by the proton gradient from the stalk to the catalytic sites of the enzyme.  相似文献   

10.
The F(1) component of mitochondrial ATP synthase is an oligomeric assembly of five different subunits, alpha, beta, gamma, delta, and epsilon. In terms of mass, the bulk of the structure ( approximately 90%) is provided by the alpha and beta subunits, which form an (alphabeta)(3) hexamer with adenine nucleotide binding sites at the alpha/beta interfaces. We report here ultrastructural and immunocytochemical analyses of yeast mutants that are unable to form the alpha(3)beta(3) oligomer, either because the alpha or the beta subunit is missing or because the cells are deficient for proteins that mediate F assembly (e.g. Atp11p, Atp12p, or Fmc1p). The F(1) alpha(1) and beta subunits of such mutant strains are detected within large electron-dense particles in the mitochondrial matrix. The composition of the aggregated species is principally full-length F(1) alpha and/or beta subunit protein that has been processed to remove the amino-terminal targeting peptide. To our knowledge this is the first demonstration of mitochondrial inclusion bodies that are formed largely of one particular protein species. We also show that yeast mutants lacking the alpha(3)beta(3) oligomer are devoid of mitochondrial cristae and are severely deficient for respiratory complexes III and IV. These observations are in accord with other studies in the literature that have pointed to a central role for the ATP synthase in biogenesis of the mitochondrial inner membrane.  相似文献   

11.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

12.
F1-ATPase, the catalytic part of FoF1-ATP synthase, rotates the central gamma subunit within the alpha3beta3 cylinder in 120 degrees steps, each step consuming a single ATP molecule. However, how the catalytic activity of each beta subunit is coordinated with the other two beta subunits to drive rotation remains unknown. Here we show that hybrid F1 containing one or two mutant beta subunits with altered catalytic kinetics rotates in an asymmetric stepwise fashion. Analysis of the rotations reveals that for any given beta subunit, the subunit binds ATP at 0 degrees, cleaves ATP at approximately 200 degrees and carries out a third catalytic event at approximately 320 degrees. This demonstrates the concerted nature of the F1 complex activity, where all three beta subunits participate to drive each 120 degrees rotation of the gamma subunit with a 120 degrees phase difference, a process we describe as a 'sequential three-site mechanism'.  相似文献   

13.
Studies reported here were undertaken to gain greater molecular insight into the complex structure of mitochondrial ATP synthase (F(0)F(1)) and its relationship to the enzyme's function and motor-related properties. Significantly, these studies, which employed N-terminal sequence, mass spectral, proteolytic, immunological, and functional analyses, led to the following novel findings. First, at the top of F(1) within F(0)F(1), all six N-terminal regions derived from alpha + beta subunits are shielded, indicating that one or more F(0) subunits forms a "cap." Second, at the bottom of F(1) within F(0)F(1), the N-terminal region of the single delta subunit and the C-terminal regions of all three alpha subunits are shielded also by F(0). Third, and in contrast, part of the gamma subunit located at the bottom of F(1) is already shielded in F(1), indicating that there is a preferential propensity for interaction with other F(1) subunits, most likely delta and epsilon. Fourth, and consistent with the first two conclusions above that specific regions at the top and bottom of F(1) are shielded by F(0), further proteolytic shaving of alpha and beta subunits at these locations eliminates the capacity of F(1) to couple a proton gradient to ATP synthesis. Finally, evidence was obtained that the F(0) subunit called "F(6)," unique to animal ATP synthases, is involved in shielding F(1). The significance of the studies reported here, in relation to current views about ATP synthase structure and function in animal mitochondria, is discussed.  相似文献   

14.
Tentoxin, produced by phytopathogenic fungi, selectively affects the function of the ATP synthase enzymes of certain sensitive plant species. Binding of tentoxin to a high affinity (K(i) approximately 10 nM) site on the chloroplast F(1) (CF(1)) strongly inhibits catalytic function, whereas binding to a second, lower affinity site (K(d) > 10 microM) leads to restoration and even stimulation of catalytic activity. Sensitivity to tentoxin has been shown to be due, in part, to the nature of the amino acid residue at position 83 on the catalytic beta subunit of CF(1). An aspartate in this position is required, but is not sufficient, for tentoxin inhibition. By comparison with the solved structure of mitochondrial F(1) [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628], Asp83 is probably located at an interface between alpha and beta subunits on CF(1) where residues on the alpha subunit could also participate in tentoxin binding. A hybrid core F(1) enzyme assembled with beta and gamma subunits of the tentoxin-sensitive spinach CF(1), and an alpha subunit of the tentoxin-insensitive photosynthetic bacterium Rhodospirillum rubrum F(1) (RrF(1)), was stimulated but not inhibited by tentoxin [Tucker, W. C., Du, Z., Gromet-Elhanan, Z. and Richter, M. L. (2001) Eur. J. Biochem. 268, 2179-2186]. In this study, chimeric alpha subunits were prepared by introducing short segments of the spinach CF(1) alpha subunit from a poorly conserved region which is immediately adjacent to beta-Asp83 in the crystal structure, into equivalent positions in the RrF(1) alpha subunit using oligonucleotide-directed mutagenesis. Hybrid enzymes containing these chimeric alpha subunits had both the high affinity inhibitory tentoxin binding site and the lower affinity stimulatory site. Changing beta-Asp83 to leucine resulted in loss of both inhibition and stimulation by tentoxin in the chimeras. The results indicate that tentoxin inhibition requires additional alpha residues that are not present on the RrF(1) alpha subunit. A structural model of a putative inhibitory tentoxin binding pocket is presented.  相似文献   

15.
BACKGROUND: The globular domain of the membrane-associated F(1)F(o)-ATP synthase complex can be detached intact as a water-soluble fragment known as F(1)-ATPase. It consists of five different subunits, alpha, beta, gamma, delta and epsilon, assembled with the stoichiometry 3:3:1:1:1. In the crystal structure of bovine F(1)-ATPase determined previously at 2.8 A resolution, the three catalytic beta subunits and the three noncatalytic alpha subunits are arranged alternately around a central alpha-helical coiled coil in the gamma subunit. In the crystals, the catalytic sites have different nucleotide occupancies. One contains the triphosphate form of the nucleotide, the second contains the diphosphate, and the third is unoccupied. Fluoroaluminate complexes have been shown to mimic the transition state in several ATP and GTP hydrolases. In order to understand more about its catalytic mechanism, F(1)-ATPase was inhibited with Mg(2+)ADP and aluminium fluoride and the structure of the inhibited complex was determined by X-ray crystallography. RESULTS: The structure of bovine F(1)-ATPase inhibited with Mg(2+)ADP and aluminium fluoride determined at 2.5 A resolution differs little from the original structure with bound AMP-PNP and ADP. The nucleotide occupancies of the alpha and beta subunits are unchanged except that both aluminium trifluoride and Mg(2+)ADP are bound in the nucleotide-binding site of the beta(DP) subunit. The presence of aluminium fluoride is accompanied by only minor adjustments in the surrounding protein. CONCLUSIONS: The structure appears to mimic a possible transition state. The coordination of the aluminofluoride group has many features in common with other aluminofluoride-NTP hydrolase complexes. Apparently, once nucleotide is bound to the catalytic beta subunit, no additional major structural changes are required for catalysis to occur.  相似文献   

16.
The ATP synthase of the thermoalkaliphilic Bacillus sp. TA2.A1 operates exclusively in ATP synthesis direction. In the crystal structure of the nucleotide-free alpha(3)beta(3)gamma epsilon subcomplex (TA2F(1)) at 3.1 A resolution, all three beta subunits adopt the open beta(E) conformation. The structure shows salt bridges between the helix-turn-helix motif of the C-terminal domain of the beta(E) subunit (residues Asp372 and Asp375) and the N-terminal helix of the gamma subunit (residues Arg9 and Arg10). These electrostatic forces pull the gamma shaft out of the rotational center and impede rotation through steric interference with the beta(E) subunit. Replacement of Arg9 and Arg10 with glutamines eliminates the salt bridges and results in an activation of ATP hydrolysis activity, suggesting that these salt bridges prevent the native enzyme from rotating in ATP hydrolysis direction. A similar bending of the gamma shaft as in the TA2F(1) structure was observed by single-particle analysis of the TA2F(1)F(o) holoenzyme.  相似文献   

17.
Structural organization of mitochondrial ATP synthase   总被引:1,自引:0,他引:1  
Specific modules and subcomplexes like F(1) and F(0)-parts, F(1)-c subcomplexes, peripheral and central stalks, and the rotor part comprising a ring of c-subunits with attached subunits gamma, delta, and epsilon can be identified in yeast and mammalian ATP synthase. Four subunits, alpha(3)beta(3), OSCP, and h, seem to form a structural entity at the extramembranous rotor/stator interface (gamma/alpha(3)beta(3)) to hold and stabilize the rotor in the holo-enzyme. The intramembranous rotor/stator interface (c-ring/a-subunit) must be dynamic to guarantee unhindered rotation. Unexpectedly, a c(10)a-assembly could be isolated with almost quantitive yield suggesting that an intermediate step in the rotating mechanism was frozen under the conditions used. Isolation of dimeric a-subunit and (c(10))(2)a(2)-complex from dimeric ATP synthase suggested that the a-subunit stabilizes the same monomer-monomer interface that had been shown to involve also subunits e, g, b, i, and h. The natural inhibitor protein Inh1 does not favor oligomerization of yeast ATP synthase. Other candidates for the oligomerization of dimeric ATP synthase building blocks are discussed, e.g. the transporters for inorganic phosphate and ADP/ATP that had been identified as constituents of ATP synthasomes. Independent approaches are presented that support previous reports on the existence of ATP synthasomes in the mitochondrial membrane.  相似文献   

18.
Ko YH  Pan W  Inoue C  Pedersen PL 《Mitochondrion》2002,1(4):339-348
Although signal transduction mechanisms originating from receptors on the plasma membrane and targeted to metabolic and other enzymes/proteins localized in the cytoplasm or the nucleus have been extensively studied in animal cells, few such studies have focused on the mitochondrial energy producing machinery, i.e. the electron transport chain and ATP synthase complex (F0F1). Significantly, it was shown in an earlier collaborative study that platelet-derived growth factor (PDGF), which is linked in signal transduction pathways to tyrosine kinase-dependent phosphorylations, regulates the phosphorylation of the mitochondrial ATP synthase delta subunit in cortical neurons (Zhang et. al., 1995. J. Neurochem. 65, 2812-2815). This is a particularly intriguing finding in light of more recent reports demonstrating that ATP synthases are nanomotors with a central rotor, one component of which is the delta subunit. In this report, evidence is provided that the PDGF-dependent phosphorylation of the ATP synthase delta subunit is not confined to neuronal cells but can be demonstrated also in studies with PDGF-treated NIH3T3 and kidney cells. Evidence is provided also that phosphorylation of the ATP synthase delta subunit may involve its single tyrosine residue, and that this phosphorylation is modulated when the cell based assay includes lysophosphatidic acid (LPA), a phospholipid signaling molecules. Finally, results are presented of an analysis which revealed a number of potential tyrosine phosphorylation sites on three other subunits (alpha, beta, and gamma) of the F1 (catalytic) moiety of the mitochondrial ATP synthase, thus making this important complex a most attractive target for future signal transduction studies.  相似文献   

19.
Two stalks link the F(1) and F(0) sectors of ATP synthase. The central stalk contains the gamma and epsilon subunits and is thought to function in rotational catalysis as a rotor driving conformational changes in the catalytic alpha(3)beta(3) complex. The two b subunits and the delta subunit associate to form b(2)delta, a second, peripheral stalk extending from the membrane up the side of alpha(3)beta(3) and binding to the N-terminal regions of the alpha subunits, which are approx. 125 A from the membrane. This second stalk is essential for binding F(1) to F(0) and is believed to function as a stator during rotational catalysis. In vitro, b(2)delta is a highly extended complex held together by weak interactions. Recent work has identified the domains of b which are essential for dimerization and for interaction with delta. Disulphide cross-linking studies imply that the second stalk is a permanent structure which remains associated with one alpha subunit or alphabeta pair. However, the weak interactions between the polypeptides in b(2)delta pose a challenge for the proposed stator function.  相似文献   

20.
A hybrid ATPase composed of cloned chloroplast ATP synthase beta and gamma subunits (betaC and gammaC) and the cloned alpha subunit from the Rhodospirillum rubrum ATP synthase (alphaR) was assembled using solubilized inclusion bodies and a simple single-step folding procedure. The catalytic properties of the assembled alpha3Rbeta3CgammaC were compared to those of the core alpha3Cbeta3CgammaC complex of the native chloroplast coupling factor 1 (CF1) and to another recently described hybrid enzyme containing R. rubrum alpha and beta subunits and the CF1 gamma subunit (alpha3Rbeta3RgammaC). All three enzymes were similarly stimulated by dithiothreitol and inhibited by copper chloride in response to reduction and oxidation, respectively, of the disulfide bond in the chloroplast gamma subunit. In addition, all three enzymes exhibited the same concentration dependence for inhibition by the CF1 epsilon subunit. Thus the CF1 gamma subunit conferred full redox regulation and normal epsilon binding to the two hybrid enzymes. Only the native CF1 alpha3Cbeta3CgammaC complex was inhibited by tentoxin, confirming the requirement for both CF1 alpha and beta subunits for tentoxin inhibition. However, the alpha3Rbeta3CgammaC complex, like the alpha3Cbeta3CgammaC complex, was stimulated by tentoxin at concentrations in excess of 10 microm. In addition, replacement of the aspartate at position 83 in betaC with leucine resulted in the loss of stimulation in the alpha3Rbeta3CgammaC hybrid. The results indicate that both inhibition and stimulation by tentoxin require a similar structural contribution from the beta subunit, but differ in their requirements for alpha subunit structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号