首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antioxidant activity of tannic acid (TA), a plant polyphenol claimed to possess antimutagenic and anticarcinogenic activities, was studied by monitoring (i) 2-deoxyribose degradation (a technique for OH detection), (ii) ascorbate oxidation, (iii) ascorbate radical formation (determined by EPR analysis) and (iv) oxygen uptake induced by the system, which comprised Fe(III) complexes (EDTA, nitrilotriacetic acid (NTA) or citrate as co-chelators), ascorbate and oxygen. TA removes Fe(III) from the co-chelators (in the case of EDTA, this removal is slower than with NTA or citrate), forming an iron-TA complex less capable of oxidizing ascorbate into ascorbate radical or mediating 2-deoxyribose degradation. The effectiveness of TA against 2-deoxyribose degradation, ascorbate oxidation and ascorbate radical formation was substantially higher in the presence of iron-NTA (or iron-citrate) than with iron-EDTA, which is consistent with the known formation constants of the iron complexes with the co-chelators. Oxygen uptake and 2-deoxyribose degradation induced by Fe(II) autoxidation were also inhibited by TA. These results indicate that TA inhibits OH formation induced by Fe(III)/ascorbate/O(2) mainly by arresting Fe(III)-induced ascorbate oxidation and Fe(II) autoxidation (which generates Fe(II) and H(2)O(2), respectively), thus limiting the production of Fenton reagents and OH formation. We also hypothesize that the Fe(II) complex with TA exhibits an OH trapping activity, which explains the effect of TA on the Fenton reaction.  相似文献   

2.
Catalase activity in cell cultures of fetal rat mesencephalon was decreased by 42 and 50%, respectively, after exposure to l-3,4-dihydroxyphenylalanine (l-DOPA, 100 μM) or dopamine (100 μM) for 48 h. Catalase activity was also decreased 21% by 10 μM hydroquinone. Ascorbic acid (200 μM), an agent that suppresses the autoxidation of l-DOPA and dopamine, blocked the anti-catalase effect of l-DOPA, but not that of dopamine. Inhibitors of the A and B forms of monoamine oxidase (20 μM clorgyline plus 20 μM pargyline) had no effect on the anti-catalase action of either l-DOPA or dopamine. The latter results suggest that products of the oxidative deamination of dopamine by monoamine oxidase are not involved in the suppression of catalase activity. However, autoxidation reactions of l-DOPA may play a role since ascorbate suppressed the anti-catalase effect of l-DOPA. On the contrary, the basis for the failure of ascorbate to similarly block the anti-catalase effect of dopamine is uncertain. l-DOPA and dopamine (25 μM) also inhibited crystalline catalase in solution after incubation for 1 h at neutral pH (40–50% inhibition). Inhibition was blocked by 0.45 M ethanol, indicating a need for autoxidation and the formation of compound II, which is an enzymatically inactive form of catalase. The ability to model the enzyme inhibition in purely chemical experiments indicates a probable mechanism for loss of enzymatic activity in cell cultures. Inhibition of catalase may contribute to cell damage during incubation of cultures with l-DOPA, dopamine, or other autoxidizable compounds. Copyright © 1996 Elsevier Science Ltd  相似文献   

3.
Conditions necessary for the activation by ascorbic acid of soluble guanylate cyclase purified from bovine lung have been examined. Ascorbic acid (0.1-10 mM) did not directly activate the enzyme, nonetheless, pronounced activation by ascorbate (3-10 mM) was observed in incubation mixtures containing 1 microM bovine liver catalase. Superoxide dismutase (SOD) and mannitol did not affect the catalase-dependent activation of guanylate cyclase elicited by ascorbate, suggesting that superoxide anion and hydroxyl radical were not mediating the activation of the enzyme. However, SOD enhanced the relatively low level activation of the enzyme elicited by catalase in the absence of added ascorbate. Pronounced inhibition (both with and without added ascorbate) was observed of catalase-dependent activation of guanylate cyclase by either ethanol (100 mM) or a fungal catalase preparation. Neither ethanol nor fungal catalase inhibited activation of guanylate cyclase by S-nitrosyl-N-acetyl-penicillamine (SNAP), a source of the nitric oxide free radical. These observations indicate that autoxidation of ascorbic acid or thiols present with the guanylate cyclase preparation leads to generation of H2O2, and its metabolism by bovine liver catalase mediates the concomitant activation of guanylate cyclase. The mechanism of activation appears to be associated with the presence of Compound I of catalase and to be inhibited by superoxide anion.  相似文献   

4.
The regeneration of the copper bands of H. pomatia haemocyanin proceeds much more slowly with an excess of ascorbate than with a slight excess of hydrogen peroxide. The regenerating agent with ascorbate is hydrogen perioxide, formed in its autoxidation at the air. This was concluded after regeneration experiments with ascorbate under strictly anaerobic conditions and at the air in the presence of catalase. The autoxidation of ascorbate was catalysed by Fe and Cu ions. In the presence of EDTA there is still metal catalysis, especially in slightly alkaline medium, due to the Fe(III)-EDTA complex. Addition of diethylenetriamine pentaacetate completely abolished the metal catalysis.  相似文献   

5.
Ross EJ  Kramer SB  Dalton DA 《Phytochemistry》1999,52(7):1203-1210
Ascorbate and ascorbate peroxidase are important antioxidants that are abundant in N2-fixing legume root nodules. Antioxidants are especially critical in root nodules because leghemoglobin, which is present at high concentrations in nodules, is prone to autoxidation and production of activated oxygen species such as O2.- and H2O2. The merits of ascorbate and ascorbate peroxidase for maintaining conditions favorable for N2 fixation were examined in two model systems containing oxygen-binding proteins (purified myoglobin or leghemoglobin) and N2-fixing microorganisms (free-living Azorhizobium or bacteroids of Bradyrhizobium japonicum) in sealed vials. The inclusion of ascorbate alone to these systems led to enhanced oxygenation of hemeproteins, as well as to increases in nitrogenase (acetylene reduction) activity. The inclusion of both ascorbate and ascorbate peroxidase resulted in even greater positive responses, including increases of up to 4.5-fold in nitrogenase activity. In contrast, superoxide dismutase did not provide beneficial antioxidant action and catalase alone provided only very marginal benefit. Optimal concentrations were 2 mM for ascorbate and 200 micrograms/ml for ascorbate peroxidase. These concentrations are similar to those found in intact soybean nodules. These results support the conclusion that ascorbate and ascorbate peroxidase are beneficial for maintaining conditions favorable for N2 fixation in nodules.  相似文献   

6.
Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation   总被引:5,自引:0,他引:5  
We have previously observed that both Fe(II) and Fe(III) are required for lipid peroxidation to occur, with maximal rates of lipid peroxidation observed when the ratio of Fe(II) to Fe(III) is approximately one (J. R. Bucher et al. (1983) Biochem. Biophys. Res. Commun. 111, 777-784; G. Minotti and S. D. Aust (1987) J. Biol. Chem. 262, 1098-1104). Consistent with the requirement for both Fe(II) and Fe(III), ascorbate, by reducing Fe(III) to Fe(II), stimulated iron-catalyzed lipid peroxidation but when the ascorbate concentration was sufficient to reduce all of the Fe(III) to Fe(II), ascorbate inhibited lipid peroxidation. The rates of lipid peroxidation were unaffected by the addition of catalase, superoxide dismutase, or hydroxyl radical scavengers. Exogenously added H2O2 also either stimulated or inhibited ascorbate-dependent, iron-catalyzed lipid peroxidation apparently by altering the ratio of Fe(II) to Fe(III). Thus, it appears that the prooxidant effect of ascorbate is related to the ability of ascorbate to promote the formation of a proposed Fe(II):Fe(III) complex and not due to oxygen radical production. The antioxidant effect of ascorbate on iron-catalyzed lipid peroxidation may be due to complete reduction of iron.  相似文献   

7.
S Kawanishi  K Yamamoto 《Biochemistry》1991,30(12):3069-3075
DNA damage induced by methylhydrazines (monomethylhydrazine, 1,1-dimethylhydrazine, and 1,2-dimethylhydrazine) in the presence of metal ions was investigated by a DNA sequencing technique. 1,2-Dimethylhydrazine plus Mn(III) caused DNA cleavage at every nucleotide without marked site specificity. ESR-spin-trapping experiments showed that the hydroxyl free radical (.OH) is generated during the Mn(III)-catalyzed autoxidation of 1,2-dimethylhydrazine. DNA damage and .OH generation were inhibited by .OH scavengers and superoxide dismutase, but not by catalase. The results suggest that 1,2-dimethylhydrazine plus Mn(III) generates .OH, not via H2O2, and that .OH causes DNA damage. In the presence of Cu(II), DNA cleavage was caused by the three methylhydrazines frequently at thymine residues, especially of the GTC sequence. The order of Cu(II)-mediated DNA damage (1,2-dimethylhydrazine greater than monomethylhydrazine approximately 1,1-dimethylhydrazine) was not correlated with the order of methyl free radical (.CH3) generation during Cu(II)-catalyzed autoxidation (monomethylhydrazine greater than 1,1-dimethylhydrazine much greater than 1,2-dimethylhydrazine). Catalase and bathocuproine, a Cu(I)-specific chelating agent, inhibited DNA damage while catalase did not inhibit the .CH3 generation. The order of DNA damage was correlated with the order of ratio of H2O2 production to O2 consumption observed during Cu(II)-catalyzed autoxidation of methylhydrazines. These results suggest that the Cu(I)-peroxide complex rather than the .CH3 plays a more important role in methylhydrazine plus Cu(II)-induced DNA damage.  相似文献   

8.
The mechanism of DNA damage by hydrazine in the presence of metal ions was investigated by DNA sequencing technique and ESR-spin trapping method. Hydrazine caused DNA damage in the presence of Mn(III), Mn(II), Cu(II), Co(II), and Fe(III). The order of inducing effect on hydrazine-dependent DNA damage (Mn(III) greater than Mn(II) approximately Cu(II) much greater than Co(II) approximately Fe(III)) was related to that of the accelerating effect on the O2 consumption rate of hydrazine autoxidation. DNA damage by hydrazine plus Mn(II) or Mn(III) was inhibited by hydroxyl radical scavengers and superoxide dismutase, but not by catalase. On the other hand, bathocuproine and catalase completely inhibited DNA damage by hydrazine plus Cu(II), whereas hydroxyl radical scavengers and superoxide dismutase did not. Hydrazine plus Mn(II) or Mn(III) caused cleavage at every nucleotide with a little weaker cleavage at adenine residues, whereas hydrazine plus Cu(II) induced piperidine-labile sites frequently at thymine residues, especially of the GTC sequence. ESR-spin trapping experiments showed that hydroxyl radical is generated during the Mn(III)-catalyzed autoxidation of hydrazine, whereas hydrogen atom adducts of spin trapping reagents are generated during Cu(II)-catalyzed autoxidation. The results suggest that hydrazine plus Mn(II) or Mn(III) generate hydroxyl free radical not via H2O2 and that this hydroxyl free radical causes DNA damage. A possibility that the hydrogen atom releasing compound participates in hydrazine plus Cu(II)-induced DNA damage is discussed.  相似文献   

9.
Vitreoscilla is a gram-negative bacterium that contains a unique bacterial hemoglobin that is relatively autoxidizable. It also contains a catalase whose primary function may be to remove hydrogen peroxide produced by this autoxidation. This enzyme was purified and partially characterized. It is a protein of 272,000 Da with a probable A2B2 subunit structure, in which the estimated molecular size of A is 68,000 Da and that of B, 64,000 Da, and an average of 1.6 molecules of protoheme IX per tetramer. The turnover number for its catalase activity was 27,000 s-1 and the Km for hydrogen peroxide was 16 mM. The peroxidase activity measured using o-dianisidine was 0.6% that of the catalase activity. Cyanide, which inhibited both catalase and peroxidase activities, bound the heme in a noncooperative manner. Azide inhibited the catalase activity but stimulated the peroxidase activity. An apparent compound II was formed by the reaction of the enzyme with ethyl hydrogen peroxide. The enzyme was reducible by dithionite, and the ferrous enzyme reacted with CO. The cellular content of Vitreoscilla hemoglobin varies during the growth cycle and in cells grown under different conditions, but the ratio of hemoglobin to catalase activity remained relatively constant, indicating possible coordinated biosynthesis and supporting the putative role of Vitreoscilla catalase as a scavenger of peroxide generated by Vitreoscilla hemoglobin.  相似文献   

10.
Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress   总被引:12,自引:0,他引:12  
The role of plant antioxidant systems in stress tolerance was studied in leaves of three contrasting wheat genotypes. Drought imposed at two different stages after anthesis resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbic acid content. Antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and catalase significantly increased under water stress. Drought tolerant genotype C 306 which had highest ascorbate peroxidase and catalase activity and ascorbic acid content also showed lowest H2O2 accumulation and lipid peroxidation (malondialdehyde content) under water stress in comparison to susceptible genotype HD 2329 which showed lowest antioxidant enzyme activity and ascorbic acid content and highest H2O2 content and lipid peroxidation. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Superoxide dismutase activity, however, did not show significant differences among the genotypes under irrigated as well as water stress condition. It seems that H2O2 scavenging systems as represented by ascorbate peroxidase and catalase are more important in imparting tolerance against drought induced oxidative stress than superoxide dismutase alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
K Ito  K Yamamoto  S Kawanishi 《Biochemistry》1992,31(46):11606-11613
The mechanism by which hydrazines induce damage to cellular and isolated DNA in the presence of metal ions has been investigated by pulsed-field gel electrophoresis (PFGE), DNA sequencing methods, and the ESR spin-trapping technique. For the detection of single-strand breaks by PFGE, an experimental procedure with alkali treatment has been designed. Isoniazid, hydrazine, and phenylhydrazine induced DNA single- and double-strand breaks in cells pretreated with Mn(II), whereas iproniazid did not. With isolated 32P-DNA, isoniazid produced DNA damage in the presence of Cu(II), Mn(II), or Mn(III). Iproniazid damage isolated DNA only in the presence of Cu(II). The Cu(II)-mediated DNA damage by isoniazid or iproniazid is due to active oxygen species other than hydroxyl free radical (.OH), presumably the Cu(I)-peroxide complex. Cleavage of isolated DNA by isoniazid plus Mn(II) occurred without marked site specificity. The DNA damage was inhibited by .OH scavengers and superoxide dismutase (SOD) but not by catalase, suggesting the involvement of .OH formed via O2- but not via H2O2. Consistently, in ESR experiments .OH formation was observed during Mn(II)-catalyzed autoxidation of isoniazid, and the .OH formation was inhibited by SOD, but not by catalase. Iproniazid plus Mn(II) produced no or little .OH. We propose a reaction mechanism for the .OH formation without a H2O2 intermediate during manganese-catalyzed autoxidation of hydrazine. The present and previous data raise the possibility that hydrazines plus Mn(II)-induced cellular DNA damage may occur, at least in part, through the non-Fenton-type reaction.  相似文献   

12.
Hydroperoxide metabolism in cyanobacteria   总被引:9,自引:0,他引:9  
The enzymes involved in antioxidative activity and the cellular content of the antioxidants glutathione and ascorbate in the cyanobacteria Nostoc muscorum 7119 and Synechococcus 6311 have been examined for their roles in hydroperoxide removal. High activities of ascorbate peroxidase and catalase were found in vegetative cells of both species and in the heterocysts of N. muscorum. The affinity of ascorbate peroxidase for H2O2 was 15- to 25-fold higher than that of catalase. Increased activity of ascorbate peroxidase was observed in N. muscorum when H2O2 production was enhanced by photorespiration. Catalase activity was decreased in dilute cultures whereas ascorbate peroxidase activity increased. Ascorbate peroxidase activity also increased when the CO2 concentration was reduced. Ascorbate peroxidase appears to be a key enzyme in a cascade of reactions regenerating antioxidants. Dehydroascorbate reductase was found to regenerate ascorbate, and glutathione reductase recycled glutathione. In vegetative cells glutathione was present in high amounts (2-4 mM) whereas the ascorbate content was almost 100-fold lower (20-100 microM). Glutathione peroxidase was not detected in either cyanobacterium. It is concluded from the high activity of ascorbate peroxidase activity and the levels of antioxidants found that this enzyme can effectively remove low concentrations of peroxides. Catalase may remove H2O2 produced under photooxidative conditions where the peroxide concentration is higher.  相似文献   

13.
Hematoxylin, a natural dye commonly used as a histological stain, generates superoxide upon oxidation to its quinonoid product, hematein. The parameters affecting this reaction were assessed in developing a new and versatile assay for superoxide dismutase. The autoxidation of hematoxylin to hematein was accompanied by an increase in absorbance between 400 and 670 nm. The autoxidation rate was proportional to hematoxylin concentration and increased with pH above 6.55. Trace metals accelerated the autoxidation and this effect was eliminated by EDTA. Superoxide dismutase inhibited the autoxidation 90-95% below pH 7.8, but above pH 8.1 the rate was augmented by superoxide dismutase. The rate inhibition at low pH was proportional to the superoxide dismutase concentration up to 70% inhibition. The rate acceleration at high pH was proportional to superoxide dismutase concentration up to approximately 200% acceleration. The autoxidation rate was not significantly affected by ethanol, cyanide, azide, hydrogen peroxide, or catalase. However, the reaction was inhibited by the reducing agents NADH, reduced glutathione, ascorbate, and dithiothreitol, and by undialyzed extracts of Escherichia coli B. When cell extracts were dialyzed prior to assay, the degree of inhibition observed was proportional to the concentration of superoxide dismutase in the extract. These observations form the basis for negative and positive assays of superoxide dismutase which are inexpensive and simple to perform. The negative assay has the added advantage of being applicable at physiological pH.  相似文献   

14.
Recent intervention studies revealed that beta-carotene supplement to smokers resulted in a higher incidence of lung cancer. However, the causal mechanisms remain to be clarified. We reported here that vitamin A (retinol) and its derivative (retinal) caused cellular DNA cleavage detected by pulsed field gel electrophoresis. Retinol and retinal significantly induced 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in HL-60 cells but not in H(2)O(2)-resistant HP100 cells, suggesting the involvement of H(2)O(2) in cellular DNA damage. Experiments using (32)P-labeled isolated DNA demonstrated that retinol and retinal caused Cu(II)-mediated DNA damage, which was inhibited by catalase. UV-visible spectroscopic and electron spin resonance-trapping studies revealed the generation of superoxide and carbon-centered radicals, respectively. The superoxide generation during autoxidation of retinoids was significantly correlated with the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, although the yield of carbon-centered radicals was not necessarily related to the intensity of DNA damage. These findings suggest that superoxide generated by autoxidation of retinoids was dismutated to H(2)O(2), which was responsible for DNA damage in the presence of endogenous metals. Retinol and retinal have prooxidant abilities, which might lead to carcinogenesis of the supplements of beta-carotene.  相似文献   

15.
In a previous study (Minotti, G., 1989, Arch. Biochem. Biophys. 268, 398-403) NADPH-supplemented microsomes were found to reduce adriamycin (ADR) to semiquinone free radical (ADR-.), which in turn autoxidized at the expense of oxygen to regenerate ADR and form O2-. Redox cycling of ADR was paralleled by reductive release of membrane-bound nonheme iron, as evidenced by mobilization of bathophenanthroline-chelatable Fe2+. In the present study, iron release was found to increase with concentration of ADR in a superoxide dismutase- and catalase-insensitive manner. This suggested that membrane-bound iron was reduced by ADR-. with negligible contribution by O2-. or interference by its dismutation product H2O2. Following release from microsomes, Fe2+ was reconverted to Fe3+ via two distinct mechanisms: (i) catalase-inhibitable oxidation by H2O2 and (ii) catalase-insensitive autoxidation at the expense of oxygen, which occurred upon chelation by ADR and increased with the ADR:Fe2+ molar ratio. Malondialdehyde formation, indicative of membrane lipid peroxidation, was observed when approximately 50% of Fe2+ was converted to Fe3+. This occurred in presence of catalase and low concentrations of ADR, which prevented Fe2+ oxidation and favored only partial Fe2+ autoxidation, respectively. Lipid peroxidation was inhibited by superoxide dismutase via increased formation of H2O2 from O2-. and excessive Fe2+ oxidation. Lipid peroxidation was also inhibited by high concentrations of ADR, which favored maximum Fe2+ release but also caused excessive Fe2+ autoxidation via formation of very high ADR:Fe2+ molar ratios. These results highlighted multiple and diverging effects of ADR, O2-., and H2O2 on iron release, iron (auto-)oxidation and lipid peroxidation. Stimulation of malondialdehyde formation by catalase suggested that lipid peroxidation was not promoted by reaction of Fe2+ with H2O2 and formation of hydroxyl radical. The requirement for both Fe2+ and Fe3+ was indicative of initiation by some type of Fe2+/Fe3+ complex.  相似文献   

16.
In this work, we investigated the influence of NADH on the redox state of myoglobin and the roles of pyruvate and lactate in this process. NADH increased the autoxidation rate of myoglobin. Both a drop in pH and partial deoxygenation markedly stimulated the autoxidation process and the influence of NADH. A correlation between met-Mb formation rate and NADH oxidation rate was always observed. The increased rate of Mb autoxidation caused by NADH was inhibited by catalase and pyruvate but not by l-lactate. The antioxidant activity versus H2O2 of both pyruvate and lactate was evidenced by chemiluminescence experiments. The antioxidant activity of lactate disappeared completely in the presence of myoglobin or apo-myoglobin, whereas it was only reduced for pyruvate. These results could be of interest in preventing autoxidation of myoglobin that can contribute to ischemia-reperfusion injury during infarction or high-intensity exercise.  相似文献   

17.
A novel anti-5,5-dimethyl-1-pyrroline N-oxide (DMPO) polyclonal antiserum that specifically recognizes protein radical-derived DMPO nitrone adducts has been developed. In this study, we employed this new approach, which combines the specificity of spin trapping and the sensitivity of antigen-antibody interactions, to investigate protein radical formation from lactoperoxidase (LPO). When LPO reacted with GSH in the presence of DMPO, we detected an LPO radical-derived DMPO nitrone adduct using enzyme-linked immunosorbent assay and Western blotting. The formation of this nitrone adduct depended on the concentrations of GSH, LPO, and DMPO as well as pH values, and GSH could not be replaced by H(2)O(2). The level of this nitrone adduct was decreased significantly by azide, catalase, ascorbate, iodide, thiocyanate, phenol, or nitrite. However, its formation was unaffected by chemical modification of free cysteine, tyrosine, and tryptophan residues on LPO. ESR spectra showed that a glutathiyl radical was formed from the LPO/GSH/DMPO system, but no protein radical adduct could be detected by ESR. Its formation was decreased by azide, catalase, ascorbate, iodide, or thiocyanate, whereas phenol or nitrite increased it. GSH caused marked changes in the spectrum of compound II of LPO, indicating that GSH binds to the heme of compound II, whereas phenol or nitrite prevented these changes and reduced compound II back to the native enzyme. GSH also dose-dependently inhibited the peroxidase activity of LPO as determined by measuring 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation. Taken together, these results demonstrate that the GSH-dependent LPO radical formation is mediated by the glutathiyl radical, possibly via the reaction of the glutathiyl radical with the heme of compound II to form a heme-centered radical trapped by DMPO.  相似文献   

18.
The effects of superoxide dismutase (SOD) and catalase on the autoxidation rate of L-ascorbic acid (ASA) in the absence of metal ion catalysts were examined. The stabilization of ASA by SOD was confirmed, and the enzyme activity of SOD, which scavenges the superoxide anion formed during the autoxidation of ASA, contributed strongly to this stabilization. The stabilization of ASA by catalase was observed for the first time; however, the specific enzyme ability of catalase would not have been involved in the stabilization of ASA. Such proteins as bovine serum albumin (BSA) and ovalbumin also inhibited the autoxidation of ASA, therefore it seems that non-specific interaction between ASA and such proteins as catalase and BSA might stabilize ASA and that the non-enzymatic superoxide anion scavenging ability of proteins might be involved.  相似文献   

19.
The involvement of catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6) in the metabolism of alcohols was investigated by comparing Drosophila melanogaster larvae in which catalase was inhibited by dietary 3-amino-1,2,4-triazole (3AT) to larvae fed a diet without 3AT. 3AT inhibited up to 80% of the catalase activity with concordant small increases in the in vitro activities of sn-glycerol-3-phosphate dehydrogenase, fumarase, and malic enzyme, but with a 16% reduction in the in vivo incorporation of label from [14C]glucose into lipid. When the catalase activity was inhibited to different degrees in ADH-null larvae, there was a simple linear correlation between the catalase activity and flux from [14C]ethanol into lipid. By feeding alcohols simultaneously with 3AT, ethanol and methanol were shown to react efficiently with catalase in wild-type larvae at moderately low dietary concentrations. Drosophila catalase did not react with other longer chain alcohols. Catalase apparently represents a minor pathway for ethanol degradation in D. melanogaster larvae, but it may be an important route for methanol elimination from D. melanogaster larvae.  相似文献   

20.
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号