首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the extracellular biosynthesis of antimicrobial silver nanoparticles by Escherichia coli AUCAS 112 and Aspergillus niger AUCAS 237 derived from coastal mangrove sediment of southeast India. Both microbial species were able to produce silver nanoparticles, as confirmed by X-ray diffraction spectrum. The nanoparticles synthesized were mostly spherical, ranging in size from 5 to 20 nm for E. coli and from 5 to 35 nm for A. niger, as evident by transmission electron microscopy. Fourier transform spectroscopy revealed prominent peaks corresponding to amides I and II, indicating the presence of a protein for stabilizing the nanoparticles. Electrophoretic analysis revealed the presence of a prominent protein band with a molecular mass of 45 kDa for E. coli and 70 kDa for A. niger. The silver nanoparticles inhibited certain clinical pathogens, with antibacterial activity being more distinct than antifungal activity. The antimicrobial activity of E. coli was more pronounced than that of A. niger and was enhanced with the addition of polyvinyl alcohol as a stabilizing agent. This work highlighted the possibility of using microbes of coastal origin for synthesis of antimicrobial silver nanoparticles.  相似文献   

2.
Ethylparaben was transesterified to methylparaben in the presence of methanol by Pseudomonas cepacia. When the bacterium was incubated in water-methanol solutions of ethylparaben in the range of 0.01 to 2% methanol, the higher the content of methanol, the higher the conversion ratios of ethylparaben. If over 5% methanol was used, the bacterium could not survive and the reaction did not proceed. Transesterifications also proceeded with 1-propanol or benzyl alcohol instead of methanol, though the conversion ratios were low. Conversion ratios were found to be higher throughout the conversion period by entrapping the cells to Ca alginate or polyurethanes than for free cells. The results are presumably due to the higher stability of cells in 10% alcohol in which free cells could not survive. PU-3 and PU-6 are urethane prepolymers consisting of polyetherdiol and phenylisocyanate segments. PU-3 has a high polypropyleneglycol content, while PU-6 is high in polyethyleneglycol (1).  相似文献   

3.
《Chirality》2017,29(6):304-314
S‐naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2‐ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween‐80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2‐ethoxyethanol, isooctane and Tween‐80 were 3:7 and 0.1% (v /v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively.  相似文献   

4.
The biotransformation of beta-ionone by Aspergillus niger IFO 8541 entrapped in Ca-alginate beads was investigated in a two-phase liquid system, due to the low aqueous solubility of the precursor. Modelling of phase transfer processes of the substrate demonstrated that the solute was transferred from the organic droplets to the gas, giving a loss by stripping, and then from the gas to the aqueous solution where a chemical degradation occurred. The biological reaction took place after direct precursor transfer from the organic layer to the biocatalyst by surface adsorption. Studies on the biological process demonstrated the critical effect of the biomass content in the medium at the time at which beta-ionone was added. Optimum conditions involved fed-batch feedings of both precursor and carbon source (sucrose) after the biomass concentration reached a value close to 6.8g/l. The biotransformation process then took place at a constant rate of 0.046mmol/lh with a reaction yield, defined with respect to beta-ionone metabolised by the fungus, close to unity. Best results achieved in this study allowed to obtain 3.5g/l biological compounds after 400h reaction.  相似文献   

5.
Viability studies were conducted on microbial spores subjected to ultrahigh vacuum (UHV) in the 10(-9) to 10(-10) torr range. After 5 to 7 days in vacuum, they were exposed to ultraviolet (UV) or to gamma radiation either while still under vacuum or in the presence of dried air. Among the four test organisms subjected to UHV and ultraviolet radiation, Aspergillus niger was the most resistant; Bacillus megaterium, B. subtilis var. niger, and B. stearothermophilus were about equally less resistant. All four spores were more sensitive to ultraviolet radiation when UHV-dried than when desiccant-dried. Of the four test organisms subjected to UHV and gamma radiation, B. megaterium proved to be the most resistant; A. niger was the least resistant; and the remaining two organisms were of intermediate resistivity. All four organisms were less radiation resistant when UHV-dried than when irradiated in their normally hydrated state, and all showed an increased radiosensitivity after vacuum drying when oxygen was present. In addition, spores of B. subtilis var. niger and A. niger were less radiosensitive when UHV-dried and irradiated in vacuum than when "wet" and irradiated in air, whereas the reverse relationship was observed for the remaining two organisms. Based on the fact that microbial contaminants can be readily shielded from UV light by soils, metal particles, etc., and considering that the levels of ionizing radiations reported to be present in interstellar space are generally lower than those used in these experiments, the decrease in radioresistivity imparted by UHV drying is not of a sufficient magnitude to sterilize dependably portions of a spacecraft while on a mission.  相似文献   

6.
A silica monolith was prepared from commercial silica powder dispersed in water containing polymeric water soluble bio-organics (SBOs) isolated from composted urban vegetable wastes. The monolith and the pristine powder were characterized for their morphology and reactivity for immobilizing soybean peroxidase (SBP). Compared to the pristine powder, the monolith exhibited lower specific surface area (about 30% less), total pore volume and pore size (of about 200 Å of width), and bond less SBP under the same experimental conditions. The immobilized SBP products were tested for their catalytic activity in the reaction of hydrogen peroxide, 3-(dimethylamino)benzoic acid (DMAB) and 3-methyl-2-benzothiazolinone hydrazone (MBTH), by comparison with the same reaction performed with native SBP in solution. The reaction performed in the presence of immobilized SBP was slower than that catalyzed by native SBP in solution. However, in spite of its lower SBP content, monolith immobilized SBP (M-SBP) was found kinetically more active than the powder immobilized SBP (P-SBP). Also, M-SBP allowed to achieve the same reagents conversion as native SBP (95% of reagent conversion), although in longer time, whereas the maximum reagent conversion achieved with P-SBP was much lower (75% of reagent conversion). The M-SBP was more easily recovered from the reaction medium and found more stable than P-SBP upon repeated catalyst recycling (after 20 cycles 75–80% of the initial activity was retained by both immobilized samples, slightly higher in the case of M-SBP).  相似文献   

7.
Microbial oxidations of n-tetradecane, tetradecanols and tetradecanoic acid were investigated by using intact cells of Corynebacterium equi, a hydrocarbon-assimilating bacterium, in an aqueous phase and organic solvents. The bacterial cells were hydrophobic and could be well dispersed in all organic solvents employed to give homogeneous reaction mixtures, and among them, isooctane was found to be the best for the reaction. n-Tetradecane and tetradecanoic acid were completely oxidized in the aqueous phase, but not in isooctane. In contrast, 1-tetradecanol was oxidized much more readily in isooctane than in the aqueous phase, and an oxidation product identified as myristyl myristate was accumulated in isooctane at the conversion rate of 80%. 2-Tetradecanol was also readily oxidized in isooctane, and 2-tetradecanone was obtained at the conversion rate of nearly 100%. Similar results were obtained when toluene and n-hexane were used as the solvent in place of isooctane, while no reaction was observed when chloroform was employed.  相似文献   

8.
The hydrolysis of lactose using immobilized beta-galactosidase (from Aspergillus niger) on phenol-formaldehyde resin was studied at temperatures between 8 and 60 degrees C and initial lactose concentrations ranging from 2.5 to 20.0%. A model involving enzyme-galactose complex similar to Michaelis-Menten kinetics with competitive product (galactose) inhibition is suitable to describe the lactose hydrolysis reaction. A small degree of lack of fit between the model and the data was found to be due to the formation of oligosaccharides. Thermal deactivation of lactase follows first-order reaction mechanism. The effect of temperature on the reaction and the deactivation rate constants follows the Arrhenius relationship. The Oligosaccharide formation was not significantly affected by the temperature when the initial lactose concentration was 5%. A design equation for the plug-flow immobilized lactase reactor was developed from the reaction and the deactivation kinetics and was used to find the optimal operating temperature. The optimal temperature was found to be dependent on the operating time but not on the lactose concentration or the conversion. The optimal operating temperature is 60 degrees C when operating time is short but is close to 35 degrees C for a long operating time. A preliminary economic analysis indicates that the optimal operating temperature is 43, 38.5, and 33 degrees C when the operating time is 300 days, 1000 days, and infinity, respectively.  相似文献   

9.
Summary Formaldehyde dismutase was greatly stabilized by immobilization in a urethane prepolymer (PU-6). The immobilized enzyme exhibited stochiometrical dismutation of formaldehyde to methanol and formate in several repeated reactions. Conversion of methanol to formate occurred in a reaction with an immobilized enzyme system consisting of alcohol oxidase, catalase and formaldehyde dismutase, and with an intact cell-mixture of Hansenula polymorpha and Pseudomonas putida. Furthermore, the stability of the cell-mixture during repeated reactions was greatly improved by the immobilization, the 600 mM methanol added periodically being converted to formate in a 75% yield in 12 h. The immobilized cellsystem was also effective for the conversion of several aliphatic alcohols, C1 to C4, to the corresponding acids.  相似文献   

10.
The lipase of Pseudomonas cepacia was immobilized onto electrospun polyacrylonitrile (PAN) fibers and used for the conversion of (S)-glycidol with vinyl n-butyrate to glycidyl n-butyrate in isooctane. The rate of reaction with the adsorbed lipase was 23-fold higher than the initial material. After 10 recyclings, the initial reaction rate was 80% of the original rate. This system of enzyme immobilization is therefore suitable for carrying out transesterification reactions in nonaqueous solvents.  相似文献   

11.
Aim:  To evaluate the antifungal activity of nitric oxide (NO) against the growth of the postharvest horticulture pathogens Aspergillus niger , Monilinia fructicola and Penicillium italicum under in vitro conditions.
Methods and Results:  Different volumes of NO gas were injected into the Petri dish headspace to obtain the desired concentrations of 50–500  μ l l−1 . The growth of the fungi was measured for 8 days of incubation in air at 25°C . All concentrations of NO were found to produce an antifungal effect on spore germination, sporulation and mycelial growth of the three fungi, with the most effective concentration for A. niger and P. italicum being 100 and 500  μ l l−1 for M. fructicola .
Conclusions:  Short-term exposure to a low concentration of NO gas was able to inhibit the subsequent growth of A. niger , M. fructicola and P. italicum .
Significance and Impact of the Study:  NO gas has potential use as a natural fungicide to inhibit microbial growth on postharvest fruit and vegetables.  相似文献   

12.
A derivative of fuculose-1-phosphate aldolase, immobilized with high loading on glyoxal–agarose gels, has been characterized and evaluated as a biocatalyst for an aldol addition reaction. The reaction of the solid biocatalyst was diffusion-controlled for conversion of its natural substrate. Nevertheless, when catalyzing the synthesis of a biologically active aminopolyol, the lower reaction rate with non-natural substrates led to a process controlled by the intrinsic enzyme kinetics. The resulting biocatalyst has high synthetic specific activity and has been successfully used in batch synthesis reactions with high conversion. In addition, the immobilized aldolase has been employed in fed-batch synthesis, increasing the selectivity of the reaction and obtaining high conversion (88%).  相似文献   

13.
Phosphatidylcholine (PC) was synthesized from lyso-PC and long poly-unsaturated (n-3) fatty acids (PUFA) using immobilized phospholipase A2. The esterification was performed using the fatty acids as the main solvent and isooctane or ethanol (99.5%) at low concentrations (7–45%) as additional solvents. The temperature was kept constant at 45d`C and the water concentrations were carefully controlled.

The best yield of PC (22%) was found in the isooctane system at a low water content (22% of the dry immobilized enzyme). In the ethanol system, the yield of PC was only half. The best yields were attained when the concentrations of both isooctane and ethanol were below 7% and the reaction time was very long (9 days). Improved contact between the enzyme and the substrates would probably increase the reaction rate.  相似文献   

14.
In this study, biodesulfurization (BDS) was carried out using immobilized Rhodococcus erythropolis KA2-5-1 in n-tetradecane containing dibenzothiophene (DBT) as a model oil (n-tetradecane/immobilized cell biphasic system). The cells were immobilized by entrapping them with calcium alginate, agar, photo-crosslinkable resin prepolymers (ENT-4000 and ENTP-4000), and urethane prepolymers (PU-3 and PU-6); and it was found that ENT-4000-immobilized cells had the highest DBT desulfurization activity in the model oil system without leakage of cells from the support. Furthermore, ENT4000-immobilized cells could catalyze BDS repeatedly in this system for more than 900 h with reactivation; and recovery of both the biocatalyst and the desulfurized model oil was easy. This study would give a solution to the problems in BDS, such as the troublesome process of recovering desulfurized oil and the short life of BDS biocatalysts.  相似文献   

15.
A unique method that applied a multilayer-immobilization strategy was developed to prepare nanofibrous enzymes for biosynthesis. LiCl co-electrospun with polyurethane nanofibers enabled strong physical adsorption of bovine serum albumin (BSA), forming the first layer of protein on the nanofibers; lipase AK was subsequently crosslinked to BSA as an outer layer of enzyme. The content of LiCl in nanofibers was found to be a sensitive factor affecting the activity and stability of the immobilized lipase. For biodiesel synthesis from soybean oil and methanol in isooctane, the reaction rate catalyzed by nanofibrious lipase carrying 5 wt% LiCl was 6.6-fold higher than fibers without LiCl, with a conversion of 91% was achieved within 2 h. LiCl also induced much improved enzyme stability. The nanofibrous lipase with 5% LiCl could be repeatedly used for 42 cycles without apparent activity loss, while the immobilized lipase without LiCl lost over 90% activity within 13 reuse cycles.  相似文献   

16.
beta-Ionone, an aroma compound exhibiting flower notes, can be obtained from beta-carotene in a cooxidation system utilizing xanthine oxidase-generated reactive oxygen species (ROS). ROS have to be controlled as, although they can give rise to beta-ionone, they may also degrade it. In this work, the biotransformation of beta-carotene into beta-ionone was investigated in systems containing variable proportions of decane to extract beta-ionone before degradation. The use of 50% or 90% decane resulted in increased production yields. Tween 80, which was added to further improve the production, slightly decreased the reactivity of the medium and the extraction of beta-carotene, but increased the extraction of beta-ionone. In total, the addition of Tween 80 significantly improved the yields of conversion, which reached 34% with 50% decane and 2.5 g/L Tween 80 compared to 10% without decane and Tween 80. These results show that it is possible to control a ROS-mediated reaction by the addition of a solvent phase and by modifing the medium composition.  相似文献   

17.
Chloroperoxidase from Caldariomyces fumago, a peroxidase that performs P450-like chemistry, was immobilized via covalent attachment into polyurethane foam as well as conjugated with a surfactant or polymer via colyophilization. The resulting preparations catalyzed enantio- and regioselective oxidations in hydrophobic organic media with tert-butyl hydroperoxide as the oxidant.Dried PUR-foam immobilized CPO mediated the selective oxidation of indole to 2-oxindole (regioselectivity: 99%) in water-saturated isooctane or 1-octanol. Thioanisole was converted into the corresponding (R)-sulfoxide (ee > 99%) in isooctane medium.The complexes of CPO with sodium octadecylsulphate or ethyl cellulose mediated the oxidation of thioanisole in water-immiscible organic media with variable enantioselectivity due to radical side-reactions. In the presence of alpha-tocopherol, acting as radical scavenger, the (R)-sulfoxide was formed with ee > 90%. The effect of the water activity on the catalytic activity of the complexes was investigated.The CPO complexes likewise mediated the regioselective oxidation of indole into 2-oxindole in water-saturated isooctane or 1-octanol and its kinetics were investigated. The reaction suffered from substrate inhibition when carried out in isooctane.  相似文献   

18.
A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation.  相似文献   

19.
Continuous hydrolysis of olive oil by immobilized lipase in organic solvent   总被引:4,自引:0,他引:4  
Lipase (EC 3.1.1.3) from Candida rugosa was immobilized with DEAE-Sephadex A50, Sephadex G50, Sephadex LH-20, Amberlite IRA94, and Amberlite XAD-7. The enzye immobilized with DEAE-Sephadex A50 was found to be most effective for continuous hydrolysis of olive oil in isooctane. For the continuous reaction, 0.2 g of dry immobilized enzyme was swollen with predetermined amount of water, and packed in a glass column reactor. When the organic solvent (Isooctane) containing olive oil substrate was cocurrently fed with aqueous buffer, the two phases were evenly distributed throughout the packed bed without surfactant supplement or prior mixing of the two phases. A small amount of the surfactant (AOT) was used only in packing procedure, and no additional surfactant was necessary thereafter. Effects of initial water content of the swollen gel, buffer types, and strength were examined in the continuous reaction. Our results suggest that the operational half-life was affected by desorption of the bound enzyme. Under the conditions of 20% olive oil in isooctane and 25 mM triethanolamine buffer (pH 7.0), operational half life was 220 h at 30 degrees C. The reactor was also operable with n-hexane, but the operational stability of the immobilized enzyme in n-hexane was only half of that in isooctane. Our results indicate that various enzyme carrier having hydrophilic or amphiphilic properties could be used for two-phase continuous reaction in packed-bed column, reactor without any surfactant supply or prior dispersion of the two immiscible phases. (c) 1992 John Wiley & Sons, Inc.  相似文献   

20.
Resistance of Micro-organisms to Inactivation by Gaseous Ethylene Oxide   总被引:8,自引:6,他引:2  
A simple method for the exposure of micro-organisms to ethylene oxide on membrane filters in a modified desiccator has been devised and used to study microbial resistance to the gaseous sterilant and the term ' R -value' is suggested to express this. The resistance of many known species and isolates has been assessed and compared. Several species of Bacillus were isolated from natural habitats and their spores were found to be more resistant than the strain of Bacillus subtilis var. niger (NCTC 10073) frequently used to monitor ethylene oxide sterilization. However, endospores of some bacterial species exhibited little resistance. Fungal spores and vegetative bacteria exhibited low resistance to the sterilant except after drying in organic material when they appeared more resistant than spores of B. subtilis var. niger. It was concluded that resistance to ethylene oxide did not correlate with resistance to heat, irradiation or other chemical disinfectants, or to the existence in the endospore form per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号