首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular portrait of lens gap junction protein MP70   总被引:3,自引:0,他引:3  
A 70-kDa membrane protein (MP70) is a component of the lens fiber gap junctions. Its membrane topology and its N-terminal sequence are similar to those of the connexin family of proteins. Some features of MP70 containing fiber gap junctions are, however, distinct from gap junctions in other mammalian tissues: (i) Lens connexons form crystalline arrays only after cleavage of junctional proteins in vitro. These hexagonal arrays have a periodicity of 13.6 nm which is significantly larger than the 8- 9-nm spacing of liver and heart gap junctions. (ii) Lens fiber gap junctions dissociate in low concentrations of nonionic detergent and this provides an avenue to purify MP70 directly from a membrane mixture. Isolated MP70 in the form of 17 S structures has an appearance consistent with connexon pairs. (iii) The C-terminal half of MP70 is cleaved in situ by a lens endogenous calcium-dependent protease. The processed from MP38 remains in the membrane and is abundant in the central region of the lens. A testable hypothesis for MP70 function is presented.  相似文献   

2.
A 70,000-D membrane protein (MP70), which is restricted to the eye lens fibers and is present in immunologically homologous form in many vertebrate species, has been identified. By use of anti-MP70 monoclonal antibodies for immunofluorescence microscopy and electron microscopy, this polypeptide was localized in lens membrane junctional domains. Both immunofluorescence microscopy and SDS PAGE reveal an abundance of MP70 in the lens outer cortex that coincides with a high frequency of fiber gap junctions in the same region.  相似文献   

3.
A 70-kDa lens membrane polypeptide (MP70) is a specific component of the fiber gap junctions. The C-terminal portion of MP70 is removed by age-related proteolytic processing, leaving an N-terminal 38-kDa polypeptide (MP38) in the membrane. Membrane association and topology of MP70 and of its processed form MP38 have been studied by hydrophobic labeling with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and phenyl isothio[14C]cyanate. Membrane-embedded segments have been identified. They are localized in the N-terminal 30-kDa portion of MP70 and MP38. The C-terminal 40-kDa portion of MP70 appears to be exposed entirely at the cytoplasmic side of the junctional membranes. Hence, potentially poreforming peptide segments in the MP70 molecule are conserved upon age-related processing to MP38.  相似文献   

4.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined.  相似文献   

5.
A lens intercellular junction protein, MP26, is a phosphoprotein   总被引:7,自引:2,他引:5       下载免费PDF全文
The major protein present in the plasma membrane of the bovine lens fiber cell (MP26), thought to be a component of intercellular junctions, was phosphorylated in an in vivo labeling procedure. After fragments of decapsulated fetal bovine lenses were incubated with [32P]orthophosphate, membranes were isolated and analyzed by SDS PAGE and autoradiography. A number of lens membrane proteins were routinely phosphorylated under these conditions. These proteins included species at Mr 17,000 and 26,000 as well as a series at both 34,000 and 55,000. The label at Mr 26,000 appeared to be associated with MP26, since (a) boiling the membrane sample in SDS led to both an aggregation of MP26 and a loss of label at Mr 26,000, (b) the label at 26,000 was resistant to both urea and nonionic detergents, and (c) two-dimensional gels showed that a phosphorylated Mr 24,000 fragment was derived from MP26 with V8 protease. Studies with proteases also provided for a localization of most label within approximately 20 to 40 residues from the COOH-terminus of MP26. Published work indicates that the phosphorylated portion of MP26 resides on the cytoplasmic side of the membrane, and that this region of MP26 contains a number of serine residues. The same region of MP26 was labeled when isolated lens membranes were reacted with a cAMP-dependent protein kinase prepared from the bovine lens. After the in vivo labeling of lens fragments, phosphoamino acid analysis of MP26 demonstrated primarily labeled serines, with 5-10% threonines and no tyrosines. Treatments that lowered the intracellular calcium levels in the in vivo system led to a selective reduction of MP26 phosphorylation. In addition, forskolin and cAMP stimulated the phosphorylation of MP26 and other proteins in concentrated lens homogenates. These findings are of interest because MP26 appears to serve as a protein of cell-to-cell channels in the lens, perhaps as a lens gap junction protein.  相似文献   

6.
Thin section electron microscopy reveals two different types of membrane interactions between the fiber cells of bovine lens. Monoclonal antibodies against lens membrane protein MP70 (Kistler et al., 1985, J. Cell Biol., 101:28-35) bound exclusively to the 16-17-nm intercellular junctions. MP70 localization was most dramatic in the lens outer cortex and strongly reduced deeper in the lens. In contrast, the 12-nm double membrane structures and single membranes were consistently unlabeled. In freeze-fracture replicas with adherent cortical fiber membranes, MP70 was immunolocalized in the junctional plaques which closely resemble the gap junctions in other tissues. MP70 is thus likely to be associated with intercellular communication in the lens.  相似文献   

7.
The crystalline lens is an attractive system to study the biology of intercellular communication; however, the identity of the structural components of gap junctions in the lens has been controversial. We have cloned a novel member of the connexin family of gap junction proteins, Cx50, and have shown that it is likely to correspond to the previously described lens fiber protein MP70. The N-terminal amino acid sequence of MP70 closely matches the sequence predicted by the clone. Cx50 mRNA is detected only in the lens, among the 12 organs tested, and this distribution is indistinguishable from that of MP70 protein. A monoclonal antibody directed against MP70 and an anti-Cx50 antibody produced against a synthetic peptide identify the same proteins on western blots and produce identical patterns of immunofluorescence on frozen sections of rodent lens. We also show that expression of Cx50 in paired Xenopus oocytes induces high levels of voltage-dependent conductance. This indicates that Cx50 is a functional member of the connexin family with unique physiological properties. With the cloning of Cx50, all known participants in gap junction formation between various cell types in the lens are available for study and reconstitution in experimental systems.  相似文献   

8.
A culture system was developed which permitted the differentiation of chicken lens epithelial cells to lentoid bodies which contained several cell layers, accumulated high levels of delta-crystallin, and produced extensive gap junctions. This differentiation process was prevented when the cells were infected with a temperature-sensitive src mutant of Rous sarcoma virus and maintained at the permissive temperature. These transformed cells continued to proliferate and also synthesized the major lens gap junction protein, MP28, at near-normal rates. However, this MP28 was not assembled to produce gap junctions. Cultures shifted to the nonpermissive temperature formed lentoid bodies similar to those in uninfected lens cultures, including the establishment of gap junctions containing MP28.  相似文献   

9.
Phosphorylation of lens intrinsic membrane proteins by protein kinase C   总被引:2,自引:0,他引:2  
Two intrinsic proteins of bovine lens membranes with apparent relative molecular masses (Mr, app) of 26,000 and 18,000 were phosphorylated in intact membranes by protein kinase C prepared from either bovine brain or lens. The kinase preparations exhibited histone H1 phosphorylation dependent on calcium and phospholipid but not on cAMP. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the lens membranes showed a major band at Mr, app = 26,000 (identified as MP26, the main intrinsic protein of lens fiber cells), an intermediate band at Mr, app = 18,000 and several minor bands. Autoradiography of complete assay mixture containing protein kinase C, calcium, magnesium and [gamma-32P]ATP showed major bands at Mr, app = 18,000 and 26,000. Several lines of evidence indicated that the label at Mr, app = 26,000 was associated with MP26, a protein which has been found in lens junctions and which may form cell-cell channels. Treatment of the phosphorylated membranes with chymotrypsin and V8 protease cleaved the major band at Mr, app = 26,000 to fragments of Mr, app .= 22,000 and 24,000. Label was not detected in the resulting Mr, app = 22,000 peptide, but the Mr, app = 24,000 peptide was found to be labeled. Phosphoamino acid analysis of MP26 indicated that approximately 75% of the label was on phosphoserine and 25% was on phosphothreonine. No label was found on phosphotyrosine. These results differ from those reported for cAMP-dependent phosphorylation of lens proteins. Phosphorylation by protein kinase C may account for some of the labeling of MP26 detected in vivo.  相似文献   

10.
Summary MP26, a protein thought to form gap junctional channels in the lens, and other lens proteins were phosphorylated under conditions that activate protein kinase C. Phosphorylation was detected both in lens fiber cell fragments in an in vivo labeling procedure with32P-phosphate and in cell homogenates with32P-ATP. In these experiments, both calcium and 12-O-tetradecanoylphorbol 13-acetate (TPA) were necessary for maximal phosphorylation of MP26. Calcium stimulated the phosphorylation of MP26 approximately fourfold and TPA with calcium led to a sevenfold increase. If TPA was present, 1 m calcium was sufficient for maximal labeling. Phosphoamino acid analysis demonstrated approximately 85% phosphoserine, 15% phosphothreonine, and no phosphotyrosine when MP26 was phosphorylated in lens homogenates in the presence of TPA and calcium and then electrophoretically purified. Phosphorylation occurred near the cytoplasmic, C-terminal of MP26. The possible involvement of other kinases was also examined. The Walsh inhibitor, which affects cAMP-dependent protein kinases, had no influence on the TPA-mediated increase in phosphorylation. In studies with isolated membranes and added kinases, MP26 was also found to not be a substrate for calcium/calmodulindependent protein kinase II. Thus, protein kinase C may have phosphorylated MP26 in a direct manner.  相似文献   

11.
We previously described cultures of chick embryo lens cells which displayed a marked degree of differentiation. In this report, the junctions found between the lens fiber-like cells in the differentiated "lentoids" are characterized in several ways. Thin-section methods with electron microscopy first demonstrated that numerous, large junctions between lentoid cells accompanied the other differentiated features of these cells. Freeze-fracture techniques, including quantitative analysis, then revealed that (a) junctional particles were loosely arranged as is typical of fiber cells, (b) the population of individual junctional areas in culture was indistinguishable from that found in 10- to 12-day chick embryo lenses, and (c) apparent junction formation occurred during the development of the lens cells, with lacy arrays of particles being associated with fiber-like junctions. In addition, gap junctions with hexagonally packed particles, typical of lens epithelial cells, largely disappeared during the course of differentiation. Injection of tracer dyes into lentoid cells resulted in rapid intercellular movement of dye, consistent with functional cell-to-cell channels connecting lentoid cells. During the development of the lens cells in culture, as junction formation occurred, an increase of approximately eight-fold in MP28 protein was observed within the cells. These combined results indicate that (a) extensive lens fiber junctions and functional cell-to-cell channels are found between differentiated lentoid lentoid cells in vitro, (b) lens fiber junctions appear to form during the course of lens cell differentiation in culture, (c) a significant increase occurs in the putative junctional protein before the cultures are highly developed, (d) the increased levels of MP28 and junction formation may be required for the full expression of the differentiated state in the lens fiber cell, and (e) this culture system should prove to be valuable for additional experiments on lens junctions and for other studies requiring the development of lens fiber cells in vitro.  相似文献   

12.
cAMP-dependent protein kinase, derived from either calf lens or bovine heart, promotes the phosphorylation of three lens plasma membrane proteins of molecular mass 28 kDa, 26 kDa and 18 kDa. Correlation of the maximal level of phosphorylation of these components with the Coomassie blue staining intensity of fractionated lens membranes suggests that the phosphorylation of the 28 kDa and 18 kDa components may be approximately stoichiometric. The protein kinase substrates could be dephosphorylated by a cardiac sarcoplasmic-reticulum-bound protein phosphatase activity. The 26 k Da component comigrated with MP26, the major lens membrane component that has been localized to the lens fiber cell junction. Treatment of phosphorylated lens membranes with chymotrypsin did not suggest that any of the three major phosphorylated components was derived from the partial proteolysis of a larger phosphoprotein. After electrophoretic separation of phosphorylated proteins, treatment with N-chlorosuccinimide confirmed that there was little similarity in the structure of the three phosphoproteins. Chymotrypsin did, however, reveal a cryptic phosphorylation site in a 22 kDa fragment that appeared to be derived from MP26. Treatment of phosphorylated membranes with reducing agents resulted in the disappearance of the 28 kDa phosphorylated component and the appearance of a new phosphorylated component of 18 kDa; neither MP26 nor the original 18 kDa component was affected by such treatment. It is not clear whether the original 18 kDa phosphoprotein, present in unreduced samples, is the same as that generated with reducing agents from the 28 kDa phosphorylated lens membrane component.  相似文献   

13.
《The Journal of cell biology》1983,97(5):1491-1499
The in situ distribution of the 26-kdalton Main Intrinsic Polypeptide (MIP or MP 26), a putative gap junction protein in ocular lens fibers, was defined at the electron microscope level using indirect immunoferritin labeling of ultrathin frozen sections of rat lens. MIP was found distributed throughout the plasma membrane of the lens fiber cell, with no apparent distinction between junctional and nonjunctional membrane. MIP was not detectable in the basal or lateral plasma membrane of the lens epithelial cell, including the interepithelial cell gap junctions; nor was MIP detectable in the plasma membrane or gap junctions of the hepatocyte. Previous reports have indicated that the protein composition of the lens fiber cell junction differs from that of the hepatocyte gap junction. The evidence presented here suggests that the composition of the fiber cell junction and plasma membrane is also immunocytochemically distinct from that of its progenitor, the lens epithelial cell.  相似文献   

14.
Polyclonal antisera were prepared in rabbits using both native and chymotrypsin-digested bovine lens fiber plasma membranes. MP26, the principal protein of lens fiber plasma membranes, and CT20, a chymotryptic fragment of MP26, were isolated electrophoretically and used to purify anti-MP26 and anti-CT20 activity from the respective antisera by affinity chromatography. These affinity-purified antisera were characterized by immunoreplica. Immunofluorescence microscopy localized MP26 on sections of methacrylate-embedded lenses in the lens fiber plasma membranes, but not the lens epithelium. Immunocytochemistry of isolated native or chymotrypsin-digested lens fiber plasma membranes localized both the MP26 and the CT20 only in the nonjunctional plasma membranes, with no detectable activity in the lens fiber junctions themselves. Electron microscopy revealed a second set of pentalaminar profiles, thinner by 4 nm than the lens fiber junctions, which contained demonstrable anti-MP26 and anti-CT20 activity following immunocytochemistry. These results indicate either that MP26 is not a component of the lens fiber junctions, or that significant conformational changes accompany assembly of MP26 into lens fiber junctions, resulting in the masking of MP26 antigenic determinants.  相似文献   

15.
Gap junction structures were assembled in vitro from octyl-beta-D-glucopyranoside-solubilized components of lens fiber cell membranes. Individual pore structures (connexons), short double-membrane structures, and other amorphous material were evident in the solubilized mixture. Following the removal of the detergent by dialysis, these connexons associated to form single- and double-layered, two-dimensional hexagonal arrays (unit cell size a = b = 8.5 nm). The formation of larger arrays was dependent on the lipid-to-protein ratio and the presence of Mg2+ ions. Crystallographic analysis of electron micrographs revealed that lens junctional connexons consisted of six subunits surrounding a stain-filled channel. Upon further detergent treatment, in vitro assembled gap junctions were insoluble and formed three-dimensional stacks while other components were solubilized. SDS-PAGE and mass data from scanning transmission electron microscopy strongly suggest that a 38-kDa polypeptide, which is a processed form of the lens specific gap junction protein MP70, is a major component of the arrays. The in vitro assembly of gap junctions opens new avenues for the structural analysis of gap junctions and for the study of the intermolecular interactions of connexons during junctional assembly.  相似文献   

16.
NCAM in the differentiation of embryonic lens tissue   总被引:1,自引:0,他引:1  
The role of the neural cell adhesion molecule (NCAM)2 in ocular lens differentiation was investigated in chicken embryos. Changes in expression of NCAM were documented by immunohistology of frozen sections. This analysis revealed that NCAM diminished during lens fiber differentiation, in contrast to the gap junction-associated protein MP26 which became more abundant. The form of NCAM expressed was determined by Western blot analysis of proteins extracted from the different regions of the Embryonic Day 6 lenses. All regions expressed NCAM with an apparent molecular weight of 140 kDa and relatively low levels of polysialylation. The function of NCAM in lens differentiation was investigated using antibodies that inhibit NCAM-mediated adhesion. Two parameters that change during maturation of the lens epithelial cells were monitored: the thickness of the tissue, indicating the length of lens cells, and the particle arrangement of gap junctions, reflecting the state of junctional differentiation. When epithelial cell explants of Embryonic Day 6 lenses were cultured for 5 days, the cells elongated and displayed an increase in the loose, random intramembranous particle arrangements characteristic of maturing lens fiber gap junctions. When the explants were cultured in the presence of anti-NCAM Fabs, the epithelia were thinner than in matched controls and had particle arrangements characteristic of a less mature state. The expression of NCAM during lens differentiation and the effects of attenuating NCAM function suggest that adhesion mediated by NCAM is an essential event in lens cell differentiation.  相似文献   

17.
The 18,000-dalton bovine lens fiber cell intrinsic membrane protein MP18 was phosphorylated on a serine residue by both cAMP-dependent protein kinase and protein kinase C. In addition, this protein bound calmodulin and was recognized by a monoclonal antibody (2D10). These different regions were localized using enzymatic and chemical fragmentation of electrophoretically purified MP18 that had been phosphorylated with either cAMP-dependent protein kinase or protein kinase C. Partial digestion of 32P-labeled MP18 with protease V8 resulted in a Mr = 17,000 peptide that bound calmodulin, but neither contained 32P or was recognized by the monoclonal antibody 2D10. Furthermore, the 17-kDa peptide had the same N-terminal amino acid sequence as MP18. Thus, the monoclonal antibody 2D10 recognition site and the protein kinase phosphorylation site(s) are close together and confined to a small region in the C terminus of MP18. This conclusion was confirmed in experiments where MP18 was fragmented with trypsin, endoproteinase Lys-C, or CNBr. The location of the phosphorylation site was confirmed by sequencing the small 32P-labeled, C-terminal peptide that resulted from protease V8 digestion of 32P-labeled MP18. This peptide contained a consensus sequence for cAMP-dependent protein kinase.  相似文献   

18.
Gap junction structures were assembled in vitro from octyl-β- -glucopyranoside-solubilized components of lens fiber cell membranes. Individual pore structures (connexons), short double-membrane structures, and other amorphous material were evident in the solubilized mixture. Following the removal of the detergent by dialysis, these connexons associated to form single- and double-layered, two-dimensional hexagonal arrays (unit cell size a = B = 8.5 nm). The formation of larger arrays was dependent on the lipid-to-protein ratio and the presence of Mg2+ ions. Crystallographic analysis of electron micrographs revealed that lens junctional connexons consisted of six subunits surrounding a stain-filled channel. Upon further detergent treatment, in vitro assembled gap junctions were insoluble and formed three-dimensional stacks while other components were solubilized. SDS-PAGE and mass data from scanning transmission electron microscopy strongly suggest that a 38-kDa polypeptide, which is a processed form of the lens specific gap junction protein MP70, is a major component of the arrays. The in vitro assembly of gap junctions opens new avenues for the structural analysis of gap junctions and for the study of the intermolecular interactions of connexons during junctional assembly.  相似文献   

19.
We demonstrate that the limited proteolysis of the lens fiber-cell gap junction protein, MP26, is intrinsic in mammalian lens fiber plasma membranes. Incubations of isolated intact bovine lens fiber plasma membranes in buffer alone did not elicit proteolysis of MP26. Incubations in the buffer with detergent, however, resulted in the limited proteolysis of MP26 which was totally inhibited by calcium chelators, thiol-alkylating agents, and protease inhibitors. As the limited proteolysis required the presence of detergent, it must depend on an enzymatic activity intrinsic in the lens fiber plasma membranes or in MP26 itself.  相似文献   

20.
The mechanisms regulating the permeability of lens epithelial cell gap junctions in response to calcium ionophore or ATP agonist-mediated increases in cytosolic Ca2+ (Cai2+) have been investigated using inhibitors of calmodulin (CaM) and PKC. Cell-to-cell transfer of the fluorescent dye AlexaFluor594 decreased after the rapid and sustained increase in Cai2+ (to micromolar concentrations) observed after the addition of ionophore plus Ca2+ but was prevented by pretreatment with inhibitors of CaM but not PKC. In contrast, the delayed, transient decrease in cell-to-cell coupling observed after the addition of ATP that we have reported previously (Churchill G, Lurtz MM, and Louis CF. Am J Physiol Cell Physiol 281: C972-C981, 2001) could be prevented by either the direct or indirect inhibition of PKC but not by inhibition of CaM. Surprisingly, there was no change in the relative proportion of the different phosphorylated forms of lens connexin43 after this ATP-dependent transient decrease in cell-to-cell coupling. Although BAPTA-loaded cells did not display the ATP-dependent transient increase in Cai2+, the delayed, transient decrease in cell-to-cell dye transfer was still observed, indicating it was Cai2+ independent. Thus CaM-mediated inhibition of lens gap junctions is associated with sustained, micromolar Cai2+ concentrations, whereas PKC-mediated inhibition of lens gap junctions is associated with agonist activation of second messenger pathways that are independent of changes in Cai2+. calcium; connexin43; lens gap junctions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号