首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Theodor Lange  Jan E. Graebe 《Planta》1989,179(2):211-221
A gibberellin (GA) C-20 hydroxylase that catalyses the conversion of GA53 to GA44 was purified from developing pea embryos by ammonium-sulfate precipitation, gel filtration and anion-exchange column chromatography. The purification was about 270-fold and 15% of the enzymic activity was recovered. The relative molecular mass was 44000 by Sephadex G-200 gel filtration. The apparent Michaelis constant was 0.7 M and the isoelectric point was 5.6–5.9. The enzymic activity was optimal at pH 7.0 2-Oxoglutarate and ascorbate were required for activity. Low concentrations of Fe2+ stimulated the reaction, but externally added Fe2+ was not essential, even in the most purified preparation. Catalase and bovine serum albumin also stimulated. Dithiothreitol preserved the activity during purification but was not needed during incubation. In fact, the simultaneous presence of dithiothreitol and Fe2+ in the incubation mixture was inhibitory to the purified enzyme. The cofactor requirements are typical for those of 2-oxoglutarate-dependent dioxygenases.When the incubation time was long enough, GA53 was converted to both GA44 and GA19. The proportions of these two products remained constant throughout the purification, but this does not necessarily mean that their formations is catalysed by a single enzyme. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis showed that the final preparation contained several proteins. Although the most prominent protein band was located within the range expected for the enzyme on the grounds of its molecular weight, this band did not represent the enzyme, since it separated from the GA C-20 hydroxylase activity on ultrathin-layer isoeletric focusing.Abbreviation BSA bovine serum albumin - DEAE diethylaminoethyl - DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GAn gibberellin An - HPLC high-performance liquid chromatography - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

2.
A procedure is described for purification of NAD malic enzyme (EC 1.1.1.39) to near homogeneity from potato tuber mitochondria. The purified enzyme is active with either NAD or NADP, and functions with either Mg2+ or Mn2+. Vapp is greatest when the enzyme is assayed with Mg2+ and NAD. When Mn2+ replaces Mg2+ the Vapp of the NAD-linked reaction decreases but the Km values for all substrates drop substantially. When NADP is used in place of NAD, the Vapp of the Mg2+-linked reaction decreases and the Km values for most substrates increase. The pH optimum of the enzyme depends on the metal ion and cofactor used and varies between 6.4 and 6.8. At pH 6.8, with saturating levels of Mg2+ and NAD, the turnover number of the enzyme is 37,000 min?1. The shape of the pH profile indicates the involvement of two to three protons in the activation of the enzyme, whereas only one proton is involved in the inactivation process. The molecular weight of the enzyme in the presence of 5 mm dithiothreitol and 2 mm MgCl2 is 490,000 as determined by gel filtration. A lower molecular weight form of the enzyme predominates in gel filtration at lower levels of dithiothreitol and in native gel electrophoresis. Sodium dodecyl sulfate gel electrophoresis of the enzyme reveals two main bands with molecular weights of 61,000 and 58,000, suggesting that the subunit stoichiometry of the high-molecular-weight form may be α4β4. However, given the possibility that the smaller subunit may be a proteolytic artifact, the enzyme may prove to be an octamer of identical subunits.  相似文献   

3.
Malonyl-CoA decarboxylase was purified (800-fold) from an erythromycin-producing strain of Streptomyces erythreus using DEAE-cellulose, Sephadex G-100, SP-Sephadex, and gel filtration with Sephadex G-75. The molecular weight of the native enzyme was 93,000 as determined by gel filtration and the subunit molecular weight was 45,000 as estimated by sodium dodecyl sulfate-polyacrylamide electrophoresis, suggesting an α2 subunit composition for the native enzyme. Evidence is presented that during the purification procedure and storage a proteolytic cleavage occurred resulting in the formation of 30- and 15-kDa peptides. The enzyme showed a pH optimum of about 5.0 whereas the vertebrate enzyme showed an optimum at alkaline pH. The enzyme decarboxylated malonyl-CoA with a Km of 143 μm and V of 250 nmol min?1 mg?1. For the decarboxylation of methylmalonyl-CoA this enzyme showed the opposite stereospecificity to that shown by vertebrate enzyme; the (R) isomer was decarboxylated at 3% of the rate observed with malonyl-CoA while the (S) isomer was not a substrate. Neither avidin nor biotin affected the rate of malonyl-CoA decarboxylation, suggesting that biotin is not involved in catalysis. Acetyl-CoA and free CoA were found to be competitive inhibitors. Propionyl-CoA, butyryl-CoA, succinyl-CoA, and methylmalonyl-CoA showed little inhibition, and neither thiol-directed reagents nor chelating agents inhibited the enzyme. High ionic strength and sulfate ions caused reversible inhibition of the enzymatic activity. Under two different cultural conditions the time course of appearance of malonyl-CoA decarboxylase was determined by measuring the enzyme activity and the level of the enzyme protein by an immunological method using rabbit antibodies prepared against the enzyme. In both cases the increase and decrease in the decarboxylase correlated with the rate of production of erythromycin, suggesting a possible role for this enzyme in the antibiotic production.  相似文献   

4.
The supernatant above hatched sea urchin (Strongylocentrotus purpuratus) blastulae contains crude hatching protease, which is heterogeneous in molecular weight, solubility, charge, and density. It requires urea treatment (6 m, 22 °C, 6 h) to dissociate from the enzyme the heterogeneous population of fragments it has generated in digesting its substrate, the fertilization envelope. It can then be purified 340-fold by diethylaminoethyl-cellulose, ammonium sulfate, and Sephadex G-100. The resulting preparation, homogeneous by the criteria of gel exclusion chromatography, sodium dodecyl sulfate gel electrophoresis, and thermal inactivation, has the following properties: specific activity = 1.44 U mg?1 (1.44 μmol min?1 mg?1); kcat = 0.72 s-1; molecular weight = 29,000; energy of activation = 12.9 kcal mol?1 on dimethylated casein;Km = 0.93 mgml?1 dimethylated casein. The pure enzyme is optimally active at pH 7 to 9, 0.5 m NaCl, 10 mm Ca2+, and 42 °C. Purification renders the enzyme less stable to freezing and thawing and increases the rate of its thermal inactivation at 37 °C by 100-fold.  相似文献   

5.
α-l-Iduronidase has been purified 25,000-fold from the soluble proteins of human kidney by chromatography on heparin-Sepharose, hydroxylapatite, and Bio-Gel P-100. The α-l-iduronidase activity is associated with 80% of the protein in the most purified preparation. It has a molecular weight of 60,000 ± 6500, determined by sedimentation equilibrium, and can be dissociated by reduction into subunits of molecular weight 31,000 ± 6500 determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate in the presence of dithiothreitol. It contains glucosamine and binds to concanavalin A. The pH optimum, Km and Vmax for two substrates, phenyl iduronide and [3H]anhydromannitol iduronide, were found to be 4.0, 1.05 mm, 16 μmol/mg protein/min, and 4·5, 9 mm and 270 μmol/mg protein/min, respectively. The enzyme is of the low uptake, noncorrective form with respect to fibroblasts cultured from the skin of patients with Hurler syndrome. It is inhibited by 106 m p-chloromercuribenzoate and 10?3 m Cu2+, but is not significantly affected by other divalent cations, EDTA, or sulfhydryl compounds. Antibodies to α-l-iduronidase have been raised in goats.  相似文献   

6.
Coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri was purified from the soluble fraction of crude extracts and its physical and kinetic properties were studied. The enzyme was purified approximately 90-fold over crude extracts to a specific activity of 50 units/mg protein and was estimated to be 40% pure by polyacrylamide gel electrophoresis. From active enzyme centrifugation studies, aldehyde dehydrogenase was found to have a sedimentation coefficient of s20, w = 7.4. The Stokes radius of the enzyme was determined by gel filtration and found to be 9.5 nm in the presence of substrates and 11.0 nm in the absence of substrates. Using the values found for the sedimentation coefficient and the Stokes radius, the molecular weight of the enzyme in the presence of substrates was calculated to be 290,000 and the frictional ratio, 2.2. Aldehyde dehydrogenase can utilize thiols other than CoA as acetyl acceptors. A number of methods were employed in order to exclude the possibility that these thiols act merely by recycling nonenzymatically trace amounts of CoA that might be in the enzyme preparation. From steady-state kinetic measurements, a ping pong mechanism was proposed in which NAD+ binds to free enzyme, acetaldehyde binds next, and NADH is released before CoA binds and acetyl-CoA released. At Km levels of other substrates, substrate inhibition by CoA was observed. The nature of the substrate inhibition is discussed.  相似文献   

7.
Pyrocatechase [catechol:oxygen, 1,2-oxidoreductase (decyclizing), EC 1.13.11.1] from Pseudomonas arvilla C-1 has been reported to contain 2 g atoms of iron/mol of enzyme, based on a molecular weight of 90,000, determined by sedimentation and diffusion constants (Y. Kojima, H. Fujisawa, A. Nakazawa, T. Nakazawa, F. Kanetsuna, H. Taniuchi, M. Nozaki, and O. Hayaishi, 1967, J. Biol. Chem., 242, 3270–3278). The molecular weight was estimated again by sedimentation equilibrium and Sephadex G-200 gel filtration and found to be 63,000 and 60,000, respectively. The enzyme was also found to contain 1 g atom of iron/mol of enzyme, based on a molecular weight of 63,000. The enzyme was dissociated into two bands on polyarcylamide gel electrophoresis in the presence of either sodium dodecyl sulfate or 8 m urea, and was separated into two subunits, α and β, by CM-cellulose chromatography using a buffer solution containing 8 m urea. The molecular weights of the α and β subunits were determined to be 30,000 and 32,000, respectively, by sodium dodecyl sulfate-gel electrophoresis. The NH2-terminal sequences of these subunits determined by Edman degradation were as follows: α subunit, Thr-Val-Asn-Ile-Ser-His-Thr-Ala-Gln-Ile-Gln-Gln-Phe-Phe-Gln-Gln-(X)-(X)-Gly -Phe-Gly; β subunit, Thr-Val-Lys-Ile-Ser-His-Thr-Ala-Asp-Ile-Gln-Ala-Phe-Phe-Asn-Gln-Val-(X)-Gly-Leu-Asx. The COOH-terminal amino acid residues were determined to be alanine for the α subunit and glycine for the β subunit by three different methods: carboxypeptidase digestion, tritium labeling, and hydrazinolysis. These results indicate that the enzyme consists of two nonidentical subunits, α and β.  相似文献   

8.
The Cl?-activated arginine aminopeptidase was purified from human erythrocytes using electrofocusing in granulated gel, gel permeation chromatography, and affinity chromatography. The purified enzyme showed a molecular weight of 105,000 ± 3000 and was homogenous according to several criteria. A subunit structure was revealed during sodium lauryl sulfate electrophoresis, the main form being of Mr 24,500 ± 1300. The enzyme was considered to be a tetramer consisting of four monomers of equal molecular weight. Cl? affected the hydrolysis of peptides and synthetic substrates differently, the Cl? activation being less marked with peptide substrates. The catalysis obeyed regular Michaelis-Menten kinetics and Cl? affected both the Km and V values. Arg-Phe and bradykinin showed no cooperativity in the hydrolysis of Arg-2-naphthylamide catalyzed by the Cl?-activated arginine aminopeptidase. Cl? affected the enzyme structure reflected by changes in the uv-absorption spectra in the presence and without added Cl?.  相似文献   

9.
An NADH-dependent 15-ketoprostaglandin Δ13 reductase has been purified to near homogeneity from human placenta by a procedure which includes affinity chromatography on blue Sepharose. The enzyme utilizes as substrates 15-ketoprostaglandins of the E, F, A, and B series, and the reaction is experimentally irreversible. Molecular weight estimations on Sephadex G-100 and sodium dodecyl sulfate disc gel electrophoresis suggest that the enzyme is a dimer. The subunits appear to be similar in size if not identical and have a molecular weight of 35,000. The mechanism of the reaction of 15-ketoprostaglandin E2 and NADH catalyzed by this enzyme has been investigated by steady-state kinetic methods. The 13,14-dihydro-15-ketoprostaglandin product is an inhibitor of the reaction, being competitive with respect to 15-ketoprostaglandin E2 and noncompetitive with respect to NADH; NAD+ does not inhibit the reaction. NADPH and Cibacron blue 3G-A are “dead-end” inhibitors of the reaction; both act competitively with respect to NADH and noncompetitively with respect to 15-ketoprostaglandin E2. These observations are consistent with a rapid equilibrium random mechanism with the formation of an unreactive enzyme · NADH · 13,14-dihydro-15-ketoprostaglandin E2 complex. The interaction of NADPH and Cibacron blue 3G-A with the free enzyme was investigated further by fluorimetry. Both substances bind to the free enzyme and quench its fluorescence. This property was utilized to titrate the enzyme, and a value of 3.28 × 10?11 mol of binding sites/mU of enzyme was obtained.  相似文献   

10.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes.  相似文献   

11.
Galactokinase (EC 2.7.1.6; ATP: d-galactose-1-phosphototransferase) was purified 152-fold with an 11% yield from Tetrahymena thermophila maximally derepressed for enzyme synthesis in late stationary phase. The purification procedure utilized sequential acid precipitation, batch DEAE-Sephacel chromatography, differential ammonium sulfate precipitation and narrow range electrofocusing. The apparent molecular weight of the holoenzyme as determined by gel filtration on Sephadex G-200 is 50 000-55 000. The holoenzyme consists of two subunits of approx. 28 000 daltons each, as determined by SDS-polyacrylamide gel electrophoresis. The native enzyme appears to be a single species with an isoelectric point at pH 5.1 Optimal activity was obtained at pH 7.8 and 41°C, with no added monovalent salt. d-Galactose, 2-deoxygalactose and galactosamine all are suitable carbohydrate substrates for the stereospecific galactokinase; only substitution at the C-2 position of galactose retains enzyme recognition. The enzyme utilizes ATP, 2′-dATP and 3′-dATP as phosphate donors; ADP and adenosine-5′-[γ-thio]triphosphate are inhibitory. The Km values for galactose and ATP were determined to be 0.60 mM and 0.15 mM, respectively. The enzyme requires a divalent cation for activity, with effectiveness being in the order: Mg2+ >Co2+ >Mn2+ >Fe2+. Galactokinases from all eucaryotic sources studied thus far seem to be very similar. Based upon the results reported here, the galactokinases from Tetrahymena and yeast appear to be most similar in their biophysical and biochemical properties.  相似文献   

12.
3-Methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidation pathway, was highly purified from bovine kidney. The native enzyme has an approximate molecular weight of 835,000 as measured from exclusion limits by polyacrylamide gel electrophoresis at pH 7.3. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated two subunits, identified as a biotin-free subunit (A subunit; Mr = 61,000) and a biotin-containing subunit (B subunit; Mr = 73,500). The biotin content of the enzyme was 1 mol/ 157,000 g protein, consistent with an AB protomeric structure for the enzyme. The isoelectric point of the enzyme was found to be 5.4. Maximal MCase activity was found at pH 8 and 38 °C in the presence of Mg2+ and an activating monovalent cation such as K+. Kinetic constants (Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 75 μm; ATP, 82 μm; HCO3?, 1.8 mm. Certain acyl-CoA derivatives, including crotonyl-CoA, (2Z)-3-ethylcrotonyl-CoA, and acetoacetyl-CoA, were also substrates for the enzyme. Some data on inhibition of the enzyme by acyl-CoA derivatives, and sulfhydryl- and arginyl-reagents, are presented.  相似文献   

13.
NADP-malic enzyme (EC 1.1.1.40), which is involved in the photosynthetic C4 pathway, was isolated from maize leaf and purified to apparent homogeneity as judged by polyacrylamide gel electrophoresis. At the final step, chromatography on Blue-Sepharose, the enzyme had been purified approximately 80-fold from the initial crude extract and its specific activity was 101 μmol malate decarboxylated/mg protein/min at pH 8.4. The enzyme protein had a sedimentation coefficient (s20,w) of 9.7 and molecular weight of 2.27 × 105 in sucrose density gradient centrifugation, and molecular weight of 2.26 × 105 calculated from sedimentation equilibrium analysis. The molecular weight of the monomeric form was determined to be 6.3 × 104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the pyruvate carboxylation reaction, HCO3? proved to be the active molecular species involved. With all other substrates at saturating concentration, the following kinetic constants were obtained: Km (malate), 0.4 mm; Km (NADP), 17.6 μm; Km (Mg2+), 0.11 mm. The maize leaf malic enzyme was absolutely specific for NADP. The Arrhenius plot obtained from enzyme activity measurements was linear in a temperature range of 13 to 48 °C, and the activation energy was calculated to be 9500 cal/mol.  相似文献   

14.
The purification procedure of milligram quantities of stable myoinositol-1-phosphate synthase (EC 5.5.1.4) from Neurospora crassa is reported. The procedure includes: (a) (NH4)2SO4 and protamine sulfate precipitations, (b) gel filtration in Ultrogel AcA-34 (LKB), (c) DEAE-cellulose chromatography, (d) AH-Sepharose 4B chromatography, and (e) calcium phosphate gel chromatography. The enzyme is considered pure according to the following criteria: (a) gel filtration, (b) sucrose density gradient centrifugation, (c) polyacrylamide gel electrophoresis, and (d) isoelectric focusing technique. The molecular weight estimated by gel filtration chromatography and sucrose density gradient centrifugation is 345,000. The subunit molecular weight is 59,000. The active enzyme seems to posses an hexameric structure. The isoelectric point estimated for the pure enzyme is 5.2. The enzyme was optimally stimulated by 10 mm (NH4)2SO4 and by 50 mm KCl, while NaCl had a minor inhibitory effect at higher concentrations. The divalent cations Mg2+ and Mn2+ were inhibitory only at nonphysiological concentrations. The enzymatic activity after the salt fractionation steps was about 33% NAD+ independent; but with purification the resulting homogeneous enzyme showed less than 5% NAD+-independent activity.  相似文献   

15.
The 1H and 13C nmr spectra of Co(NH3)5ImH3+ and the 1H nmr spectra of αCotrien(ImH)23+ and βCotrien(ImH)23+ are reported. The pKa values determined from the dependence of the chemical shift on pH are 10.0, 9.6, and 10.1, respectively. The range of the chemical shift between the acid and base forms is unusually small in the 1H nmr, 0.5–0.7 ppm for the C-2 H and about 0.25 ppm for the C-4 H and C-5 H. In the 13C nmr, C-2 and C-4 have large shifts to low field and C-5 a small shift to high field on deprotonation. The C-2 proton is not exchanged with solvent 2H under acidic or basic conditions, in marked contrast to the corresponding proton in both imidazole and 1-methylimidazole. These spectroscopic and chemical properties should be useful for the direct identification of metal-ion coordinated histidines in proteins.  相似文献   

16.
Adenosine kinase (ATP:adenosine 5′-phosphotransferase, EC 2.7.1.20) from Lupinus luteus seeds has been obtained with good yield in almost homogeneous state by ammonium sulfate fractionation, chromatography on aminohexyl-Sepharose, and gel filtration. Active enzyme is a single polypeptide chain with a molecular weight of about 38,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel nitration. Estimated molecular activity is 156. The enzyme exhibits a strict requirement for divalent metal ions. Among several ions tested the following appeared to be active as cofactors: Co2+ ? Mn2+ > Mg2+ = Ca2+ ? Ni2+ > Ba2+. The optimal metal ion concentrations were as follows: Mn2+, 0.5 mm, Mg2+ and Ca2+, 1 mm, Co2+, 1.5 mm. The adenosine kinase shows optimum activity at pH 7.0–7.5. Km values for adenosine and ATP are 1.5 × 10?6 and 3 × 10?4m, respectively. Lupin adenosine kinase is completely inhibited by antisulfhydryl reagents. ATP is the main phosphate donor and among other nucleoside triphosphates ITP, dATP, GTP, and XTP can substitute it but less effectively. Among the ribo- and deoxyribonucleosides occurring in nucleic acids adenosine is phosphorylated effectively and 2′-deoxyadenosine at a lower rate. Of other adenosine analogs tested all adenine d-nucleosides and purine derivative ribosides, besides those with a hydroxyl group at C-6, were found to be substrates for lupin adenosine kinase. Pyrimidine ribo- and deoxyribonucleosides were not phosphorylated.  相似文献   

17.
Purine nucleoside phosphorylase (PNP) was purified from rat hepatoma cells and normal liver tissue utilizing the techniques of ammonium sulfate fractionation, heat treatment, ion-exchange and molecular exclusion chromatography, and polyacrylamide gel electrophoresis. Homogeneity was established by disc gel electrophoresis in the presence and absence of sodium dodecyl sulfate. Purified rat hepatoma and liver PNPs appeared to be identical with respect to subunit and native molecular weight, substrate specificity, heat stability, kinetics and antigenic identity. A native molecular weight of 84,000 was determined by gel filtration. A subunit molecular weight of 29,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single isoelectric point was observed at pH 5.8, and the pH optimum was 7.5. Inosine, guanosine, xanthosine, and 6-mercaptopurine riboside were substrates for the enzymes. The apparent Km for both inosine and guanosine was about 1.0 × 10?4m and for phosphate was 4.2 × 10?4m. Hepatoma and liver PNP showed complete cross-reactivity using antiserum prepared against the liver enzyme.  相似文献   

18.
Soluble preparations from mycelium of the dimorphic fungus Mucor rouxii contained detectable amounts of phosphoprotein phosphatase activity. This cytosolic phosphatase activity exhibited a molecular weight below 80,000 and could be resolved into two different forms (enzymes I and II) by chromatography on DEAE-cellulose followed by gel filtration on Sephacryl S-300. Enzyme I (Mr 64,000) was mainly a histone phosphatase activity, absolutely dependent on divalent cations, with a K0.5 for MnCl2 of 2 mm. Enzyme II (Mr 40,000) was active with histone and phosphorylase. Its activity was independent or slightly inhibited by Mn2+. This enzyme was strongly inhibited by 50 mm NaF or 1 mm ATP. When partially purified enzymes I and II were separately treated with ethanol, the catalytic properties of enzyme II were apparently not affected while those of enzyme I were drastically changed. The activity with histone, which was originally dependent on Mn2+, became independent or slightly inhibited by the cation. The treatment was accompanied by a notable increase in phosphorylase phosphatase activity which was strongly inhibited by Mn2+. Treated enzyme I eluted from DEAE-cellulose and Sephacryl S-300 columns at a position similar to that of enzyme II.  相似文献   

19.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

20.
A cyanide-hydrolysing enzyme from Burkholderia cepacia strain C-3 isolated from soil was purified to electrophoretic homogeneity by ammonium sulphate precipitation and column chromatography on HiTrap Q (DEAE-agarose) and phenyl-Sepharose HP. The enzyme was purified 48-fold with a 0.8% yield and a final specific activity of 26.8 u/mg protein. The purified enzyme was observed as a single polypeptide band of molecular mass 38 kDa during both denaturing and non-denaturing gel electrophoresis. Enzymatic activity was optimal at pH 8.0–8.5 and at 30–35 °C. Activity was stimulated by Mo2+, Sn2+, and Zn2+, and inhibited by Al3+, Co2+, Cu2+ and Hg2+. The enzyme was specific for cyanide and thiocyanate with formate and ammonia as the main products from KCN degradation. Its K m and V max values were 1.4 mM and 15.2 u/mg protein, respectively. Apparent substrate inhibition occurred at cyanide concentrations greater than 2 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号