首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we investigated the effect of risk factors of metabolic syndrome on the content of light hydrocarbons (C2-C3) in exhaled air. We used a gas chromatograph with a short multi-channel column. As a result, sex differences in concentrations of light hydrocarbons presented in exhaled air were found. In addition, such factors as smoking and diabetes mellitus type 2 in relatives reflect on the exhaled C2-C3 compounds only in women. But the overweight correlates with the exhaled acetone (C3) only in men. Thus, the fact that the metabolic changes caused by the presence of risk factors of metabolic syndrome lead to changes in gas composition of exhaled air and can be registered and used for early diagnosis has been ascertained.  相似文献   

2.
The production of labelled aliphatic hydrocarbons in Anacystis montana and Botryococcus braunii has been studied using Na2CO3 [14C] as a carbon source. The major hydrocarbon produced by A. montana is pentadecane (ca 93%) accompanied by a pentadecene (ca 4%) and other hydrocarbons in the range C13-C17. Long chain (C21-C 33) hydrocarbons could not be detected in this organism. The variety of unsaturated hydrocarbons (C25-C31) previously reported in Botryococcus braunii is confirmed and contrasts with the synthesis of unsaturated C17 hydrocarbons only, in axenic cultures prepared from single cell isolates of this colonial alga.  相似文献   

3.
Extracellular and intracellular hydrocarbons produced by Clostridium pasteurianum VKM 1774 during cultivation on glucose-containing media in an argon atmosphere or in the presence of carbon dioxide and molecular hydrogen were analyzed by gas-liquid chromatography. Intracellular hydrocarbons were 50-55% (C25-C35) n-alkanes. Carbon dioxide and molecular hydrogen stimulated synthesis of extracellular hydrocarbons, which comprised 90-95% (C11-C24) n-alkanes.  相似文献   

4.
This study was undertaken to examine the degree of Kranz anatomy development in the species intermediate to C3 and C4 types (C3-C4) in Panicum, Neurachne, Flaveria, and Moricandia. In each genus, C3 and/or C4 species were used for comparison. Leaf transections from each species were examined by light and transmission electron microscopy. The percentages of leaf photosynthetic cell profiles partitioned to bundle sheaths were higher in C4 than in C3 species, while C3-C4 species tended to be in between. However, percentages for C3-C4 species in Moricandia and some C3-C4Flaveria species were not greater than C3. When expressed on a cell profile area basis, C3-C4 species partitioned more photosynthetic tissue to bundle sheaths than C3 species in Moricandia, but not in Flaveria. Neurachne minor S. T. Blake (C3-C4) partitioned a very small portion of cell profile area to the inner bundle sheaths (5%) compared to Neurachne munroi F. Muell (C4) (21%). The percentage of organelles partitioned to bundle sheaths was much greater in C3-C4 than in C3 species. The average C3 percentages for mitochondria plus peroxisomes were 19, 8, and 19.5% for Neurachne, Flaveria, and Moricandia, respectively, compared to 41, 29, and 46.5% for the C3-C4 species. The CO2 compensation concentration was negatively related to the partitioning of tissue to bundle sheaths and to the percentage of organelles in bundle sheaths. It is concluded that all of the C3-C4 species examined have developed some degree of Kranz anatomy and that this altered anatomy is involved in their reduced apparent photorespiration.  相似文献   

5.
Summary CO2 exchange characteristics and the activity of the carboxylating enzymes phosphoenolpyruvate carboxylase (PEP-C, E.C. 4.1.1.31) and ribulose 1,5-bisphosphate carboxylase (RuBP-C, E.C. 4.1.1.39) during one year in the greenhouse and at two levels of light and temperature in growth chambers were determined in the C3-C4 intermediate species P. milioides Nees ex. Trin. These results were compared with those of P. bisulcatum Thumb. (C3) and P. maximum Jacq. (C4). Under all tested conditions, and even when the influence of leaf surface temperature on photosynthetic rates and CO2 compensation points were measured, the biochemical and physiological behaviour of the C3-C4 intermediate was more similar to that of the C3 plant than the C4 species. The C4 plant P. maximum, however, responded positively, mainly in terms of PEP-C activity and photosynthetic rate, to the regime of high light and temperature. The results presented indicate that in the C3-C4 Panicum grown in high light and temperature no direct relationships between a low CO2 compesation point and superior growth are evident. It has still to be clarified why in nature a photosynthetic-photorespiratory pathway leading to an intermediate CO2 compensation value has evolved in P. milioides.  相似文献   

6.
Gradient-corrected density functional theory applied to 1,2-diphosphino-1,2-dicarba-closo-dodecaborane, 1,2-(PH2)2-1,2-C2B10H10, and its respective PdCl2 complex presents a clear picture of the effect of complexation on the P-Cc-Cc-P fragments (Cc = cage carbon C1 or C2) in the structures. The complexation results in clear closing in the P-Cc-Cc angles and shortening of Cc-Cc bond, but only minor changes take place in the P-Cc-Cc-P torsion angle. Furthermore, complexation brings along shortening of the P-Cc bonds with concomitant increase of covalency, as revealed by atoms-in-molecules calculations. Although there is also change in the Cc-Cc distance in the cage, no significant change is involved in the bonding. These findings are compared with the results obtained by single-crystal X-ray study for [PdCl2(1,2-(PiPr2)2-1,2-C2B10H10)] and additional calculations carried out for [PdCl2(1,2-(PH2)2-C2H4)].  相似文献   

7.
The composition of the epicuticular waxes from the adaxial and abaxial surfaces of peach leaves varies considerably during one season's growth. Triterpenoid acids are major components 84–95% of the waxes from the youngest leaves but the proportions of these constituents decrease as the leaves expand. The waxes from the abaxial surfaces of fully expanded leaves consist primarily of hydrocarbons (C22–C34) and triterpenoid acids, whereas the adaxial surface waxes also contain large proportions of primary alcohols (C26-C34) and esters (C42-C52). The latter include sitosteryl esters of hexacosanoic, octacosanoic and eicosanoic acids. Variations were also noted between fully expanded leaves of different ages, the abaxial surface waxes of the oldest leaves containing the highest proportions of hydrocarbons, whilst the wax from the adaxial surface of the corresponding leaves contained the largest amounts of esters, sitosterol and hydrocarbons.  相似文献   

8.
Comparative 14CO2 pulse-12CO2 chase studies performed at CO2 compensation ()-versus air-concentrations of CO2 demonstrated a four-to eightfold increase in assimilation of 14CO2 into the C4 acids malate and aspartate by leaves of the C3-C4 intermediate species Panicum milioides Nees ex Trin., P. decipiens Nees ex Trin., Moricandia arvensis (L.) DC., and M. spinosa Pomel at . Specifically, the distribution of 14C in malate and aspartate following a 10-s pulse with 14CO2 increases from 2% to 17% (P. milioides) and 4% to 16% (M. arvensis) when leaves are illuminated at the CO2 compensation concentration (20 l CO2/l, 21% O2) versus air (340 l CO2/l, 21% O2). Chasing recently incorporated 14C for up to 5 min with 12CO2 failed to show any substantial turnover of label in the C4 acids or in carbon-4 of malate. The C4-acid labeling patterns of leaves of the closely related C3 species, P. laxum Sw. and M. moricandioides (Boiss.) Heywood, were found to be relatively unresponsive to changes in pCO2 from air to . These data demonstrate that the C3-C4 intermediate species of Panicum and Moricandia possess an inherently greater capacity for CO2 assimilation via phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) at the CO2 compensation concentration than closely related C3 species. However, even at , CO2 fixation by PEP carboxylase is minor compared to that via ribulosebisphosphate carboxylase (EC 4.1.1.39) and the C3 cycle, and it is, therefore, unlikely to contribute in a major way to the mechanism(s) facilitating reduced photorespiration in the C3-C4 intermediate species of Panicum and Moricandia.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - PEP phosphoenolpyruvate - CO2 compensation concentration - 3PGA 3-phosphoglycerate - SuP sugar monophosphates - SuP2 sugar bisphosphates Published as Paper No. 8249, Journal Series, Nebraska Agricultural Research Division  相似文献   

9.
《Inorganica chimica acta》1986,121(2):213-217
Treatment of [IrCl(C2H4)4] with K(C9H7) (C9H7 =indenyl) gives [Ir(C2H4)2(η-C9H7)]. This compound is converted quantitatively into [Ir(CO)2(η-C9H7)] by treatment with carbon monoxide. By reacting together these two iridium complexes [Ir2(μ-CO)(CO)2(ηC9H7)2] has been obtained. The compound [Ir(CO)2(η-C9H7)] reacts with [Pt(C2H4)2{P(cyclo-C6H11)3}] to give the complex [Ir2Pt(CO)3{P(cyclo-C6H11)3}(η-C9H7)2]. Protonation of the latter affords the salt [Ir2Pt(μ-H)(CO)3{P(cyclo-C6H11)3}(μ-C9H7)2] [BF4]. The main features of the molecular structure of these complexes have been established by IR and NMR spectroscopy.  相似文献   

10.
 An intergeneric hybrid plant was produced between the C3-C4 intermediate species Moricandia nitens and the C3 species Brassica napus by sexual hybridization and in vitro embryo rescue. The hybrid nature of the plant was apparent in its morphology and flower pigmentation and was confirmed by leaf isozyme patterns. The overall plant morphology and the shape and thickness of leaves of the hybrid plant were intermediate between those of the parent species. However, the bundle-sheath cells of the hybrid resembled those of the C3 parent and lacked the organelle development of the C3-C4 intermediate parent. Immunogold labelling for the presence of the P subunit of the mitochondrial glycine decarboxylase complex revealed a very similar labelling density on mitochondria in bundle-sheath and mesophyll cells in B. napus, while in  M. nitens the P subunit was only detectable in bundle sheath cells. In the hybrid the labelling density on mesophyll cell mitochondria was almost half of that on the bundle-sheath mitochondria. The CO2 compensation point of the hybrid was significantly less than that of the C3 parent but was not as low, nor as responsive to changes in light intensity, as for the C3-C4 parent. Received: 23 October 1997 / Accepted: 28 November 1997  相似文献   

11.
Photosynthetic and photorespiratory characteristics of flaveria species   总被引:2,自引:2,他引:0  
Ku MS  Wu J  Dai Z  Scott RA  Chu C  Edwards GE 《Plant physiology》1991,96(2):518-528
The genus Flaveria shows evidence of evolution in the mechanism of photosynthesis as its 21 species include C3, C3-C4, C4-like, and C4 plants. In this study, several physiological and biochemical parameters of photosynthesis and photorespiration were measured in 18 Flaveria species representing all the photosynthetic types. The 10 species classified as C3-C4 intermediates showed an inverse continuum in level of photorespiration and development of the C4 syndrome. This ranges from F. sonorensis with relatively high apparent photorespiration and lacking C4 photosynthesis to F. Among the intermediates, the photosynthetic CO2 compensation points at 30°C and 1150 micromoles quanta per square meter per second varied from 9 to 29 microbars. The values for the three C4-like species varied from 3 to 6 microbars, similar to those measured for the C4 species. The activities of the photorespiratory enzymes glycolate oxidase, hydroxypyruvate reductase, and serine hydroxymethyltransferase decreased progressively from C3 to C3-C4 to C4-like and C4 species. On the other hand, most intermediates had higher levels of phosphenolpyruvate carboxylase and NADP-malic enzyme than C3 species, but generally lower activities compared to C4-like and C4 species. The levels of these C4 enzymes are correlated with the degree of C4 photosynthesis, based on the initial products of photosynthesis. Another indication of development of the C4 syndrome in C3-C4 Flaveria species was their intermediate chlorophyll a/b ratios. The chlorophyll a/b ratios of the various Flaveria species are highly correlated with the degree of C4 photosynthesis suggesting that the photochemical machinery is progressively altered during evolution in order to meet the specific energy requirements for operating the C4 pathway. In the progression from C3 to C4 species in Flaveria, the CO2 compensation point decreased more rapidly than did the decrease in O2 inhibition of photosynthesis or the increase in the degree of C4 photosynthesis. These results suggest that the reduction in photorespiration during evolution occurred initially by refixation of photorespired CO2 and prior to substantive reduction in O2 inhibition and development of the C4 syndrome. However, further reduction in O2 inhibition in some intermediates and C4-like species is considered primarily due to the development of the C4 syndrome. Thus, the evolution of C3-C4 intermediate photosynthesis likely occurred in response to environmental conditions which limit the intercellular CO2 concentration first via refixation of photorespired CO2, followed by development of the C4 syndrome.  相似文献   

12.
The interactions of imidazolium bashed ionic liquid-type cationic gemini surfactant ([C12-4-C12im]Br2) with HSA were studied by fluorescence, time-resolved fluorescence, UV-visible, circular dichroism, molecular docking and molecular dynamic simulation methods. The results showed that the [C12-4-C12im]Br2 quenched the fluorescence of HSA through dynamic quenching mechanism as confirmed by time-resolved spectroscopy. The Stern–Volmer quenching constant (Ksv) and relevant thermodynamic parameters such as enthalpy change (ΔH), Gibbs free energy change (ΔG) and entropy change (ΔS) for interaction system were calculated at different temperatures. The results revealed that hydrophobic forces played a major role in the interactions process. The results of synchronous fluorescence, UV-visible and CD spectra demonstrated that the binding of [C12-4-C12im]Br2 with HSA induces conformational changes in HSA. Inquisitively, the molecular dynamics study contribute towards understanding the effect of binding of [C12-4-C12im]Br2 on HSA to interpret the conformational change in HSA upon binding in aqueous solution. Moreover, the molecular modelling results show the possible binding sites in the interaction system.  相似文献   

13.
[Ir(η5-C5Me5)(C3S5)] [C3S52− = 4,5-disulfanyl-1,3-dithiole-2-thionate(2−)] was prepared by a reaction of [NMe4]2[C3S5] with [Ir(η5- C5Me5)Cl2]2 in ethanol. It was reacted with bromine to afford a paramagnetic species [IrBr(η5-C5Me5)(C3S5)] with the Ir-Br bond and in the one-electron-oxidized state, and a diamagnetic dinuclear species [IrBr(η5-C5Me5)(μ-C2S4)IrBr(η5-C5Me5)]. ESR spectra for the one-electron-oxidized species in solution are discussed. The X-ray crystal structural analysis for the latter complex revealed the geometry consisting of dinuclear IrBr(η5-C5Me5) moieties bridged by the C2S42− ligand.  相似文献   

14.
The long-chain saturated and mono-unsaturated hydrocarbon content of the juice sacs of five mandarin cultivars (Mediterranean, Honey, Wilking, Kinnow, King) were examined. Normal homologues accounted for more than 47% of the saturated and more than 75% of the monoene hydrocarbons. In the saturated fraction the major hydrocarbon was n-C25 but in the monoene fraction n-C25 predominated in Kinnow and King while C29 predominated in Mediterranean, Honey and Wilking. All five cultivars could be differentiated from each other and from other citrus species by their hydrocarbon patterns. The noticeably high normal/iso ratios of saturated C23 and C25 hydrocarbons previously shown to be characteristic of mandarin species, Citrus unshiu and C. reticulata, were also found in C. nobilis and C. deliciosa.  相似文献   

15.
About 20-year-old desert plants of C4 species, Haloxylon ammodendron, growing at the southern edge of the Badain Jaran Desert in China, were selected to study the photosynthetic characteristics and changes in chlorophyll fluorescence when plants were subject to a normal arid environment (AE), moist atmospheric conditions during post-rain (PR), and the artificial supplement of soil water (SW). Results showed that under high radiation, in the AE, the species down-regulated its net assimilation rate (A) and maximum photochemical efficiency of PS II (Fv/Fm), indicating photoinhibition. However, under the PR and SW environments, A was up-regulated, with a unimodal diurnal course of A and a small diurnal change in Fv/Fm, suggesting no photoinhibition. When the air humidity or SW content was increased, the light compensation points were reduced; light saturation points were enhanced; while light saturated rate of CO2 assimilation (A max) and apparent quantum yield of CO2 assimilation (ΦC) increased. ΦC was higher while the A max was reduced under PR relative to the SW treatment. It was concluded that under high-radiation conditions drought stress causes photoinhibition of H. ammodendron. Increasing air humidity or soil moisture content can reduce photoinhibition and increase the efficiency of solar energy use.  相似文献   

16.
Photosynthetic characteristics were studied in several F1 hybrids between C4 and C3-C4 species of Flaveria. Stable carbon isotope ratios, O2 inhibition of apparent photosynthesis, and phosphoenolpyruvate carboxylase activities in the hybrids were similar to the means for the parents. Values of CO2 compensation concentrations were nearer to those of the C4 parent and apparent photosynthesis was below that of both parents, being only 60 and 74% of that of the lowest (C3-C4) parent in two experiments. Reductions of CO2 compensation concentration and O2 inhibition of apparent photosynthesis as well as increases in carbon isotope ratios and phosphoenolpyruvate carboxylase activities compared to values in C3-C4 species suggest transfer of a limited degree of C4 photosynthesis to the F1 hybrids. However, the lower apparent photosynthesis of the hybrids suggests that transfer of C4 characteristics to non-C4 species is detrimental unless characteristics associated with C4 photosynthesis are fully developed. There was a highly significant negative correlation (r = −0.90) between CO2 compensation concentration and the logarithm of phosphoenolpyruvate carboxylase activity in the parents and hybrids, suggesting involvement of this enzyme in controlling the CO2 compensation concentration. Although bundle-sheath cells were more developed in leaves of hybrids than in C3-C4 parents, they appeared to contain lower quantities of organelles than those of the C4 parent. Reduced quantities of organelles in bundle-sheath cells could indicate incomplete compartmentation of partial pathways of the C4 cycle in the hybrids. This may mean that the reduction of CO2 compensation and O2 inhibition of apparent photosynthesis relative to the C3-C4 parents is less dependent on fully developed Kranz anatomy than is increased apparent photosynthesis.  相似文献   

17.
The use of a single, commercially available column packing, TabsorbR, is described for the g. l. c. separation of a large number of different compounds. The resolution of the homologous members of the following series of compounds was achieved: (1) saturated fatty acids (C1-C18), (2) normal aliphatic saturated dlcarboxylic acids (C2-C14), (3) normal aliphatic saturated alcohols (C1-C24), (4) normal aliphatic saturated amines (C1C12), (5) the common amino acids except arginlne, histidlne and cysteine, (6) aliphatic hydrocarbons (C10-C20) and (7) monosaccharides. It should be noted that twenty-two monosaccharides including three hexosamines and two anhydrohexoses, could be resolved as aldltol acetates In a single run. In addition, galacturonic, glucuronic and lduronlc acids could be separated from one another as their 1, 4-lactones. The resolution achieved in these series of compounds was found to be consistent and highly reproducible. It is of further interest that certain Isomers of the higher fatty acids and hydrocarbons with one double bond could also be separated from the normal and saturated compounds, respectively. The applicability of “Tabsorb” for the g. l. c. separation, although noted above to be considerably broad, is by far not yet exhausted. These procedures which form the basis for the quantitative determinations of the various compounds studied as demonstrated by analysis of glycopeptldes for neutral hexoses and proteins for the amino acids, can readily be adapted to preparative methods. From the biochemical point of view “Tab-sorb” is an extremely versatile column packing in that it can be used for the identification of many of the common building blocks of natural products.  相似文献   

18.
Phosphoenolpyruvate carboxylase (PEPC) was purified from leaves of four species of Alternanthera differing in their photosynthetic carbon metabolism: Alternanthera sessilis (C3), A. pungens (C4), A. ficoides and A. tenella (C3-C4 intermediates or C3-C4). The activity and properties of PEPC were examined at limiting (0.05 mM) or saturating (10 mM) bicarbonate concentrations. The Vmax as well as Km values (for Mg2+ or PEP) of PEPC from A. ficoides and A. tenella (C3-C4 intermediates) were in between those of C3 (A. sessilis) and C4 species (A. pungens). Similarly, the sensitivity of PEPC to malate (an inhibitor) or G-6-P (an activator) of A. ficoides and A. tenella (C3-C4) was also of intermediate status between those of C3 and C4 species of A. sessilis and A. pungens, respectively. In all the four species, the maximal activity (Vmax), affinity for PEP (Km), and the sensitivity to malate (KI) or G-6-P (KA) of PEPC were higher at 10 mM bicarbonate than at 0.05 mM bicarbonate. Again, the sensitivity to bicarbonate of PEPC from C3-C4 intermediates was in between those of C3- and C4-species. Thus the characteristics of PEPC of C3-C4 intermediate species of Alternanthera are intermediate between C3- and C4-type, in both their kinetic and regulatory properties. Bicarbonate could be an important modulator of PEPC, particularly in C4 plants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The genus Flaveria consists of 23 species with significant variation in photosynthetic physiologies. We tested whether photosynthetic pathway variation in seven co-existing Flaveria species corresponds to geographic distributions or physiological performance in C3, C4, and intermediate species growing under natural conditions in south-central Mexico. We found that Flaveria pringlei (C3) was the most widely distributed species with multiple growth habits. Numerous populations of Flaveria kochiana (C4), a recently described species with a previously unknown distribution, were located in the Mixtec region of Oaxaca. Flaveria cronquistii (C3) and Flaveria ramosissima (C3-C4) were only located in the Tehuacán Valley region while Flaveria trinervia (C4) was widely distributed. Only one population of Flaveria angustifolia (C3-C4) and Flaveria vaginata (C4-like) were located near Izúcar de Matamoros. Midday leaf water potential differed significantly between Flaveria species, but did not vary according to growth habit or photosynthetic pathway. The quantum yield of photosystem II did not vary between species, despite large differences in leaf nitrogen content, leaf shape, plant size and life histories. We did not find a direct relationship between increasing C4 cycle characteristics and physiological performance in the Flaveria populations examined. Furthermore, C3 species were not found at higher elevation than C4 species as expected. Our observations indicate that life history traits and disturbance regime may be the primary controllers of Flaveria distributions in south-central Mexico.  相似文献   

20.
Two major indicators were used to access the degree of photorespiration in various photosynthetic types of Flaveria species (C3, C3-C4, C4-like, and C4): the O2 inhibition of photosynthesis measured above the O2 partial pressure which gives a maximum rate, and O2- and light-dependent whole-chain electron flow measured at the CO2 compensation point (). The optimum level of O2 for maximum photosynthetic rates under atmospheric levels of CO2 (34 Pa) was lower in C3 and C3-C4 species (ca. 2 kPa) than in C4-like and C4 species (ca. 9 kPa). Increasing O2 partial pressures from the optimum for photosynthesis up to normal atmospheric levels (ca. 20 kPa) caused an inhibition of photosynthesis which was more severe under lower CO2. This inhibition was calculated as the O2 inhibition index (A, the percentage inhibition of photosynthesis per kPa increase in O2). From measurements of 18 Flaveria species at atmospheric CO2, the A values decreased from C3 (1.9–2.1) to C3-C4 (1.2–1.6), C4-like (0.6–0.8) and C4 species (0.3–0.4), indicating a progressive decrease in apparent photorespiration in this series. With increasing irradiance at under atmospheric levels of O2, and increasing O2 partial pressure at 300 mol quanta·m–2·s–1, there was a similar increase in the rate of O2 evolution associated with whole-chain electron flow (Jo 2, calculated from chlorophyll fluorescence analysis) in the C3 and C3-C4 species compared to a much lower rate in the C4-like and C4 species. The results indicate that there is substantial O2-dependent electron flow in C3 and C3-C4 species, reflecting a high level of photorespiration compared to that in C4-like and C4 species. Consistent with these results, there was a significant decrease in from C3 (6–6.2 Pa) to C3-C4 (1.0–3.0 Pa), to C4-like and C4 species (0.3–0.8 Pa), indicating a progressive decrease in apparent photorespiration. However, C3 and C3-C4 species examined had high intrinsic levels of photorespiration with the latter maintaining low apparent rates of photorespiration and lower values, primarily by refixing photorespired CO2. The C4-like and C4 Flaveria species had low, but measurable, levels of photorespiration via selective localization of ribulose-1,5-bisphosphate carboxylase in bundle sheath cells and operation of a CO2 pump via the C4 pathway.Abbreviations and Symbols A CO2 assimilation rate - CE carboxylation efficiency - Ci intercellular CO2 partial pressure - Ia absorbed PPFD - Jo 2 oxygen evolution from PSII - PPFD photosynthetic photon flux density (mol · m–2· s–1) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - VPD water-vapor pressure difference between the leaf and atmospheric air - CO2 compensation point - CO 2 quantum yield of CO2 assimilation - PSII quantum yield of photosystem II - A O2 inhibition index for photosynthesis (percentage inhibition of photosynthesis per kPa increase in O2) This research was supported by the National Science Foundation Grant IBN 9317756 and Equipment (Grant DMB-8515521 and DOE/USDA/NSF Triagency Plnat Biochemistry Research Training Grant Program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号