首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the corresponding cDNA in Escherichia coli confers the ability on the bacterial host to incorporate ADP at significantly higher rates than ATP--similar to isolated mitochondria of yeast and animals. Phylogenetic analysis of this AAC gene (hdgaac) confirmed with high statistical support that the hydrogenosomal ADP/ATP carrier of Neocallimastix sp. L2 belongs to the family of veritable mitochondrial-type AACs. Hydrogenosome-bearing anaerobic ciliates possess clearly distinct mitochondrial-type AACs, whereas the potential hydrogenosomal carrier Hmp31 of the anaerobic flagellate Trichomonas vaginalis and its homologue from Trichomonas gallinae do not belong to this family of proteins. Also, phylogenetic analysis of genes encoding mitochondrial-type chaperonin 60 proteins (HSP 60) supports the conclusion that the hydrogenosomes of anaerobic chytrids and anaerobic ciliates had independent origins, although both of them arose from mitochondria.  相似文献   

2.
The expression of mitochondrial and hydrogenosomal ADP/ATP carriers (AACs) from plants, rat and the anaerobic chytridiomycete fungus Neocallimastix spec. L2 in Escherichia coli allows a functional integration of the recombinant proteins into the bacterial cytoplasmic membrane. For AAC1 and AAC2 from rat, apparent Km values of about 40 microm for ADP, and 105 microm or 140 microm, respectively, for ATP have been determined, similar to the data reported for isolated rat mitochondria. The apparent Km for ATP decreased up to 10-fold in the presence of the protonophore m-chlorocarbonylcyanide phenylhydrazone (CCCP). The hydrogenosomal AAC isolated from the chytrid fungus Neocallimastix spec. L2 exhibited the same characteristics, but the affinities for ADP (165 microm) and ATP (2.33 mm) were significantly lower. Notably, AAC1-3 from Arabidopsis thaliana and AAC1 from Solanum tuberosum (potato) showed significantly higher external affinities for both nucleotides (10-22 microm); they were only slightly influenced by CCCP. Studies on intact plant mitochondria confirmed these observations. Back exchange experiments with preloaded E. coli cells expressing AACs indicate a preferential export of ATP for all AACs tested. This is the first report of a functional integration of proteins belonging to the mitochondrial carrier family (MCF) into a bacterial cytoplasmic membrane. The technique described here provides a relatively simple and highly reproducible method for functional studies of individual mitochondrial-type carrier proteins from organisms that do not allow the application of sophisticated genetic techniques.  相似文献   

3.
The evolution of mitochondrial ADP and ATP exchanging proteins (AACs) highlights a key event in the evolution of the eukaryotic cell, as ATP exporting carriers were indispensable in establishing the role of mitochondria as ATP-generating cellular organelles. Hydrogenosomes, i.e. ATP- and hydrogen-generating organelles of certain anaerobic unicellular eukaryotes, are believed to have evolved from the same ancestral endosymbiont that gave rise to present day mitochondria. Notably, the hydrogenosomes of the parasitic anaerobic flagellate Trichomonas seemed to be deficient in mitochondrial-type AACs. Instead, HMP 31, a different member of the mitochondrial carrier family (MCF) with a hitherto unknown function, is abundant in the hydrogenosomal membranes of Trichomonas vaginalis. Here we show that the homologous HMP 31 of closely related Trichomonas gallinae specifically transports ADP and ATP with high efficiency, as do genuine mitochondrial AACs. However, phylogenetic analysis and its resistance against bongkrekic acid (BKA, an efficient inhibitor of mitochondrial-type AACs) identify HMP 31 as a member of the mitochondrial carrier family that is distinct from all mitochondrial and hydrogenosomal AACs studied so far. Thus, our data support the hypothesis that the various hydrogenosomes evolved repeatedly and independently.  相似文献   

4.
Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.  相似文献   

5.
腺苷酸转移酶(ANT)是线粒体内膜上负责能量分子传导的转运蛋白, 在细胞凋亡调控网络中有重要作用。本研究以棉铃虫幼虫组织的mRNA为模板, 根据鳞翅目昆虫ant基因编码区保守序列设计引物, 进行RT-PCR分析, 同时结合5′、3′ RACE方法扩增出棉铃虫ant基因的全长cDNA序列, cDNA全长为1 190 bp (GenBank登录号AY253868), 具有完整的开放阅读框架(ORF, 133~1 033 bp), 编码蛋白为300个氨基酸, 其中N端22个氨基酸为信号肽, 引导ANT蛋白定位于线粒体内膜。该蛋白具有3个保守的线粒体穿膜功能结构域, 形成能量分子传导的转运通道, 催化细胞质中ADP和线粒体内ATP间进行跨膜交换。通过与其他昆虫的腺苷酸转移酶蛋白序列比较, 发现该基因具有高度的保守性, 氨基酸序列同源性都在90%左右。  相似文献   

6.
Uncoupling proteins, members of the mitochondrial carrier family, are present in mitochondrial inner membrane and mediate free fatty acid-activated, purine-nucleotide-inhibited H+ re-uptake. Since 1995, it has been shown that the uncoupling protein is present in many higher plants and some microorganisms like non-photosynthetic amoeboid protozoon, Acanthamoeba castellanii and non-fermentative yeast Candida parapsilosis. In mitochondria of these organisms, uncoupling protein activity is revealed not only by stimulation of state 4 respiration by free fatty acids accompanied by decrease in membrane potential (these effects being partially released by ATP and GTP) but mainly by lowering ADP/O ratio during state 3 respiration. Plant and microorganism uncoupling proteins are able to divert very efficiently energy from oxidative phosphorylation, competing for deltamicroH+ with ATP synthase. Functional connection and physiological role of uncoupling protein and alternative oxidase, two main energy-dissipating systems in plant-type mitochondria, are discussed.  相似文献   

7.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

8.
A minimum model of adenine nucleotide exchange through the inner membrane of mitochondria is presented. The model is based on a sequential mechanism, which presumes ternary complexes formed by binding of metabolites from both sides of the membrane. The model explains the asymmetric kinetics of ADP-ATP exchange as a consequence of its electrogenic character. In energized mitochondria, a part of the membrane potential suppresses the binding of extramitochondrial ATP in competition with ADP. The remaining part of the potential difference inhibits the back exchange of internal ADP for external ATP. The assumption of particular energy-dependent conformational states of the translocator is not necessary. The model is not only compatible with the kinetic properties reported in the literature about the adenine nucleotide exchange, but it also correctly describes the response of mitochondrial respiration to the extramitochondrial ATP/ADP ratio under different conditions. The model computations reveal that the translocation step requires some loss of free energy as driving force. The size of the driving force depends on the flux rate as well as on the extra- and intramitochondrial ATP/ADP quotients. By both quotients the translocator controls the export of ATP formed by oxidative phosphorylation in mitochondria.  相似文献   

9.
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.  相似文献   

10.
A number of microaerophilic eukaryotes lack mitochondria but possess another organelle involved in energy metabolism, the hydrogenosome. Limited phylogenetic analyses of nuclear genes support a common origin for these two organelles. We have identified a protein of the mitochondrial carrier family in the hydrogenosome of Trichomonas vaginalis and have shown that this protein, Hmp31, is phylogenetically related to the mitochondrial ADP-ATP carrier (AAC). We demonstrate that the hydrogenosomal AAC can be targeted to the inner membrane of mitochondria isolated from Saccharomyces cerevisiae through the Tim9-Tim10 import pathway used for the assembly of mitochondrial carrier proteins. Conversely, yeast mitochondrial AAC can be targeted into the membranes of hydrogenosomes. The hydrogenosomal AAC contains a cleavable, N-terminal presequence; however, this sequence is not necessary for targeting the protein to the organelle. These data indicate that the membrane-targeting signal(s) for hydrogenosomal AAC is internal, similar to that found for mitochondrial carrier proteins. Our findings indicate that the membrane carriers and membrane protein-targeting machinery of hydrogenosomes and mitochondria have a common evolutionary origin. Together, they provide strong evidence that a single endosymbiont evolved into a progenitor organelle in early eukaryotic cells that ultimately give rise to these two distinct organelles and support the hydrogen hypothesis for the origin of the eukaryotic cell.  相似文献   

11.
ADP/ATP carriers (AACs) are major and essential constituents of the inner mitochondrial membrane. They drive the import of ADP and the export of newly synthesized ATP. They were described as functional dimers from the 1980s until the structures of the AAC shed doubt on this consensus. We aimed to ascertain the published biophysical data claiming that AACs are dimers and to characterize the oligomeric state of the protein before crystallization. Analytical ultracentrifugation sedimentation velocity experiments clearly show that the bovine AAC is a monomer in 3-laurylamido-N,N'-dimethylpropylaminoxide (LAPAO), whereas in Triton X-100 and reduced Triton X-100, higher molecular mass species can also be identified. Neutron scattering data for monomeric bovine AAC in LAPAO does not give definite conclusions on the association state, because the large amount of detergent and lipids is imperfectly matched by contrast methods. We discuss a possible way to integrate previously published biochemical evidence in favor of assemblies, the lack of well-defined multimers that we observe, and the information from the high-resolution structures, considering supramolecular organizations of AACs within the mitochondrial membrane.  相似文献   

12.
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.  相似文献   

13.
M Eilers  W Oppliger    G Schatz 《The EMBO journal》1987,6(4):1073-1077
We have investigated the energy requirement of mitochondrial protein import with a simplified system containing only isolated yeast mitochondria, energy sources and a purified precursor protein. This precursor was a fusion protein composed of 22 residues of the cytochrome oxidase subunit IV pre-sequence fused to mouse dihydrofolate reductase. Import of this protein required not only an energized inner membrane, but also ATP. ATP could be replaced by GTP, but not by CTP, TTP or non-hydrolyzable ATP analogs. Added ATP did not increase the membrane potential of respiring mitochondria; it supported import even if the proton-translocating mitochondrial ATPase and the entry of ATP into the matrix were blocked. We conclude that ATP exerts its effect on mitochondrial protein import outside the inner membrane.  相似文献   

14.
V Haucke  G Schatz 《The EMBO journal》1997,16(15):4560-4567
We have reconstituted the protein insertion machinery of the yeast mitochondrial inner membrane into proteoliposomes. The reconstituted proteoliposomes have a distinct morphology and protein composition and correctly insert the ADP/ATP carrier (AAC) and Tim23p, two multi-spanning integral proteins of the mitochondrial inner membrane. The reconstituted system requires a membrane potential, but not Tim44p or mhsp70, both of which are required for the ATP-driven translocation of proteins into the matrix. The protein insertion machinery can thus operate independently of the energy-transducing Tim44p-mhsp70 complex.  相似文献   

15.
The inner membranes of isolated bovine heart mitochondria undergo pronounced contraction upon being exposed to exogenous adenosine diphosphate (ADP), adenosine triphosphate (ATP), and certain other high-energy phosphate compounds. Contraction results in decrease of inner membrane expanse which in turn results in decrease of intracristal space and increase of mitochondrial optical density (OD). The magnitude of the OD change appears to be proportional to the degree of contraction Half-maximal contraction can be achieved with ADP or ATP at concentrations as low as about 0 3 µM. Atractyloside at concentrations as low as about 1.2 nmol/mg mitochondrial protein completely inhibits the contraction. It is concluded from these and other observations that inner membrane contraction occurs as a result of adenine nucleotide binding to the carrier involved in the exchange of adenine nucleotides across the inner mitochondrial membrane.  相似文献   

16.
The rat liver mitochondrial phosphate transporter contains a 44-amino acid presequence. The role of this presequence is not clear since the ADP/ATP carrier and the brown fat uncoupling protein, related members of a family of inner membrane anion transporters, lack a presequence and contain targeting information within the mature protein. Here, we present evidence that the rat liver mitochondrial phosphate transporter can be synthesized in vitro, imported into mitochondria, and processed to a protein of Mr 33,000. Import requires the membrane potential and external nucleotide triphosphate. The presequence inserts into the outer mitochondrial membrane, and import proceeds via a process similar to other proteins destined for the inner membrane or matrix. A mutant phosphate transporter lacking 35 amino acids at the NH2 terminus of the presequence has little capacity for mitochondrial import. The rat liver phosphate transporter is also imported and processed by rat kidney mitochondria and by mitochondria from the yeast Saccharomyces cerevisiae. A site-directed mutation of the N-ethyl-maleimide reactive cysteine 41 does not affect import or processing. The results presented show that optimal import of the mitochondrial phosphate transporter, unlike the ADP/ATP carrier and the brown fat uncoupling protein, is dependent on a presequence. As these carriers are believed to have evolved from a single gene, it seems likely that the H+/Pi carrier, known to be present in prokaryotes, appeared first and that subsequent evolutionary events leading to the other anion carriers eliminated the presequence.  相似文献   

17.
18.
The precursor of the mitochondrial inner membrane protein ADP/ATP carrier is cytoplasmically synthesized without an amino-terminal peptide extension. We constructed a truncated precursor lacking the 103 amino acids from the amino terminus (about a third of the protein). Import of the truncated precursor into mitochondria showed the import characteristics of the authentic precursor, including nucleoside triphosphate dependence, requirement for a protease-sensitive component on the mitochondrial surface, two-step specific binding to the outer membrane, and membrane potential-dependent translocation into the inner membrane. We conclude that, in contrast to all other mitochondrial precursor proteins studied so far, domains of the ADP/ATP carrier distant from the amino terminus can carry specific targeting information for transport into mitochondria.  相似文献   

19.
Arginine biosynthesis in eukaryotes is divided between the mitochondria and the cytosol. The anaerobic chytridiomycete Neocallimastix frontalis contains highly reduced, anaerobic modifications of mitochondria, the hydrogenosomes. Hydrogenosomes also occur in the microaerophilic flagellate Trichomonas vaginalis, which does not produce arginine but uses one of the mitochondrial enzymes, ornithine transcarbamoylase, in a cytosolic arginine dihydrolase pathway for ATP generation. EST sequencing and analysis of the hydrogenosomal proteome of N. frontalis provided evidence for two mitochondrial enzymes of arginine biosynthesis, carbamoylphosphate synthase and ornithine transcarbamoylase, while activities of the arginine dehydrolase pathway enzymes were not detectable in this fungus.  相似文献   

20.
Blue native polyacrylamide gel electrophoresis (BN-PAGE) analyses of detergent mitochondrial extracts have provided evidence that the yeast ATP synthase could form dimers. Cross-linking experiments performed on a modified version of the i-subunit of this enzyme indicate the existence of such ATP synthase dimers in the yeast inner mitochondrial membrane. We also show that the first transmembrane segment of the eukaryotic b-subunit (bTM1), like the two supernumerary subunits e and g, is required for dimerization/oligomerization of ATP synthases. Unlike mitochondria of wild-type cells that display a well-developed cristae network, mitochondria of yeast cells devoid of subunits e, g, or bTM1 present morphological alterations with an abnormal proliferation of the inner mitochondrial membrane. From these observations, we postulate that an anomalous organization of the inner mitochondrial membrane occurs due to the absence of ATP synthase dimers/oligomers. We provide a model in which the mitochondrial ATP synthase is a key element in cristae morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号