首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of dihydropteridine reductase [EC 1.6.99.10], which is specific for NADPH as the substrate in the reduction of quinonoid-dihydropterin to tetrahydropterin, was purified to homogeneity from bovine liver and human liver. The molecular weight of the enzyme was determined to be 65,000-70,000. The enzyme was composed of two subunits with identical molecular weight of 35,000; the amino terminal residue was determined to be valine. The isoelectric point of the enzyme was 7.05. The physicochemical properties of this enzyme were quite different from those of bovine liver NADH-specific dihydropteridine reductase [EC 1.6.99.7]. NADPH-specific dihydropteridine reductase did not cross-react with an antiserum raised against the NADH-specific dihydropteridine reductase, nor did the latter enzyme react with an antiserum to the former enzyme, indicating that the two enzymes have no common antigenic determinants. NADPH-specific dihydropteridine reductase from human liver was shown to have properties similar to those of the bovine liver enzyme.  相似文献   

2.
The catalytic properties of a new type of dihydropteridine reductase, NADPH-specific dihydropteridine reductase [EC 1.6.99.10], from bovine liver, were studied and compared with those of the previously characterized enzyme, NADH-specific dihydropteridine reductase [EC 1.6.99.7]. With quinonoid-dihydro-6-methylpterin, approximate Km values of NADPH-specific dihydropteridine reductase for NADPH and NADH were estimated to be 1.4 micron and 2,900 microns, respectively. The Vmax values were 1.34 mumol/min/mg with NADPH and 1.02 mumol/min/mg with NADPH. With NADPH, the Km values of the enzyme for the quinonoid-dihydro forms of 6-methylpterin and biopterin were 1.4 micron and 6.8 microns, respectively. The enzyme was inhibited by its reaction product, NADP+, in a competitive manner, and the inhibition constant was determined to be 3.2 microns. The enzyme was severely inhibited by L-thyroxine and by 2,6-dichlorophenolindophenol.  相似文献   

3.
Physarum polycephalum is one of few non-animal organisms capable of synthesizing tetrahydrobiopterin from GTP. Here we demonstrate developmentally regulated expression of quinoid dihydropteridine reductase (EC 1.6.99.7), an enzyme required for recycling 6,7-[8H]-dihydrobiopterin. Physarum also expresses phenylalanine-4-hydroxylase activity, an enzyme that depends on dihydropteridine reductase. The 24.4 kDa Physarum dihydropteridine reductase shares 43% amino acid identity with the human protein. A number of residues important for function of the mammalian enzyme are also conserved in the Physarum sequence. In comparison to sheep liver dihydropteridine reductase, purified recombinant Physarum dihydropteridine reductase prefers pterin substrates with a 6-(1', 2'-dihydroxypropyl) group. Our results demonstrate that Physarum synthesizes, utilizes and metabolizes tetrahydrobiopterin in a way hitherto thought to be restricted to the animal kingdom.  相似文献   

4.
It has been difficult to determine exactly NADPH-specific dihydropteridine reductase [EC 1.6.99.10] in samples which also contain NADH-specific dihydropteridine reductase [EC 1.6.99.7], because the latter enzyme interferes with the activity measurement of the former. We have devised a method to measure selectively the NADPH-specific reductase in crude extracts of bovine, human and monkey livers by the single radial immunodiffusion method using specific antiserum against the enzyme. This method makes it possible to determine the enzyme amount in 5 microliters of the 3-volume extracts of the livers. The amounts of NADPH-specific dihydropteridine reductase were calculated to be 0.252, 0.296, and 0.583 munits/5 microliter of the extracts of bovine, human, and monkey livers, respectively.  相似文献   

5.
NADH-specific dihydropteridine reductase (EC 1.6.99.7) has been purified from human erythrocytes in essentially homogeneous form. The molecular weight of the enzyme was estimated to be 46,000 by Sephadex G-100 gel filtration. The enzyme reacted with antiserum against NADH-specific dihydropteridine reductase from bovine liver and formed a single immunoprecipitin line in the Ouchterlony double-diffusion system. This precipitin line completely fused with that formed between the human liver enzyme and the antiserum. With use of 5,6,7,8-tetrahydro-6-methylpterin, Km values of the erythrocyte enzyme for NADH and NADPH were determined to be 0.94 and 47 mumol/l, respectively. Vmax values were 58.7 mumol/min/mg with NADH and 6.41 mumol/min/mg with NADPH. The average activity of NADH-specific dihydropteridine reductase of 9 human blood samples from healthy males (20-25 years old) was calculated to be approximately 600 mU/g of hemoglobin, 1.8 mU per 20 microliters of blood, or 1.9 mU per 10(8) erythrocytes.  相似文献   

6.
An antiserum was raised in a rabbit against highly purified human liver dihydropteridine reductase (EC 1.6.99.7). Dihydropteridine reductase from human liver, in human cultured fibroblasts and in continuous lymphoid cells all showed identical antigenic properties. The structural characteristics of the reductase from these three sources were further compared by the use of high-precision two-dimensional polyacrylamide-gel electrophoresis. The enzyme from radiolabelled fibroblasts and continuous lymphoid cells was isolated by immunoprecipitation or by affinity chromatography and compared with the purified liver enzyme. Two major polypeptide species were resolved, and polypeptides from all three sources co-migrated identically. Indirect evidence is presented indicating that one of the polypeptide species may have been derived from the other via a post-translational modification. These results support the concept that the same structural gene(s) encodes for dihydropteridine reductase in human liver, fibroblasts and lymphocytes.  相似文献   

7.
The distribution of dihydropteridine reductase between soluble and particulate fractions in synaptosomes parallels that of lactate dehydrogenase, but not monoamine oxidase. Ki and I50 values for inhibitors obtained with the enzyme-rich P2 fraction and its twice-washed fraction (P2W2) were essentially the same, and were similar to those obtained with highly purified human liver enzyme. Dihydropteridine reductase inhibitory potency of multi-ring compounds containing a catechol-moiety was greater than that of single ring catecholic compounds, which in turn was greater than that of p-hydroxy-phenolic compounds. The P2 fraction of rat striatal synaptosomal preparations may serve as a convenient source of dihydropteridine reductase for studying the inhibition of this enzyme.  相似文献   

8.
A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified.  相似文献   

9.
Dihydropteridine reductase isolated from the bacterium Pseudomonas species (ATCC 11299a) has been purified approximately 450-fold byammonium sulfate precipitation and diethylaminoethyl-cellulose chromatographic procedures. The preparation is at least 80% pure as judged by polyacrylamide gels. Its molecular weight was determined to be about 44,000. Both dihydropteridine reductase and phenylalanine hydroxylase activities were found to be higher in cells adapted to a medium containing L-phenylalanine or L-tyrosine as the sole carbon source than in those grown in L-asparagine. The substrate of the reductase is quinonoid dihydropteridine, and the product is tentatively identified as a tetrahydropteridine through its ability to serve as a cofactor for phenylalanine hydroxylase. The enzyme shows no marked specificity for the pteridine cofactor that occurs naturally in this organism, L-threo-neopterin. The pH optimum for the reductase is 7.2, and nicotinamide adenine dinucleotide, reduced form, is the preferred cosubstrate. Inhibition of the reduced and untreated enzyme by several sulfhydryl reagents was observed. A metal requirement for the reductase could not be demonstrated. Dihydropteridine reductase was found to be inhibited by aminopterin in a competitive manner with respect to the quinonoid dihydro form of 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine.  相似文献   

10.
The cleavage of reductively alkylated rat liver dihydropteridine reductase with cyanogen bromide afforded a mixture of peptides, six of which (CB-1 to CB-6) were isolated and purified by C8 reverse-phase high performance liquid chromatography. Portions of peptides CB-1, CB-4, and CB-6 were sequenced by automated Edman degradation and high performance liquid chromatography and the carboxyl-terminal region by conventional procedures. Further proteolytic digestion of CB-6 and isolation of the products afforded a seven-amino acid peptide. A low degeneracy probe comprising 20 nucleotides was synthesized from the sequence of this peptide and was used to screen a rat liver cDNA expression library constructed in the vector lambda gt 10. Positive clones were isolated, and detailed examination of five of these by restriction endonucleases and dideoxy sequence analyses allowed identification of the entire coding region for dihydropteridine reductase. The gene was found to code for a protein of 240 amino acids (excluding the methionine initiator) of Mr = 25,420. Each of the sequences corresponding to the peptides CB-1, CB-4, CB-6, and the carboxyl terminus were identified in the deduced protein sequence. The rat enzyme is highly homologous to the human dihydropteridine reductase; the two proteins differ in only 10 amino acids, and all are conservative substitutions. In contrast, the sequence shows little homology with that of mammalian dihydrofolate reductase: reduced pyridine nucleotide-requiring enzymes with superficial mechanistic similarities.  相似文献   

11.
1. Pteridine cofactor of phenylalanine hydroxylase (EC 1.14.16.1) and dihydropteridine reductase (EC 1.6.99.7) in the phenylalanine hydroxylating system have been studied in the fetal rat liver. 2. Activities of pteridine cofactor and dihydropteridine reductase were measured as about 6 and 50%, respectively, of the levels of adult liver in the liver from fetuses on 20 days of gestation, at this stage the activity of phenylalanine hydroxylase was almost negligible in the liver. 3. Development of the activity of sepiapterin reductase (EC 1.1.1.153), an enzyme involved in the biosynthesis of pteridine cofactor, was studied in rat liver during fetal (20-22 days of gestation), neonatal and adult stages comparing with the activity of dihydrofolate reductase (EC 1.5.1.3). Activities of the enzymes were about 80 and 50%, respectively, of the adult levels at 20 days of gestation. 4. Some characteristics of sepiapterin reductase and dihydropteridine reductase of fetal liver were reported.  相似文献   

12.
Catecholamines are potent noncompetitive inhibitors of dihydropteridine reductase in rat striatal synaptosomal preparations or purified from human liver. Their metabolites, except homovanillic acid, also inhibit the enzyme from both sources. The inhibitory potency of these compounds depends on the presence of the catechol or the 4-hydroxyphenyl structure, but may be modified by the 2-carbon side chain and its substituents. Indoleamines which have a hydroxylated aromatic nucleus (5-hydroxytryptamine and 5,6-dihydroxytryptamine) are equally inhibitory to the enzyme. These results suggest that biogenic amines themselves rather than their metabolites may serve as physiological inhibitors of dihydropteridine reductase in rat brain.  相似文献   

13.
Radioimmunoassay, immunoprecipitation, affinity chromatography and two-dimensional gel electrophoresis were used to test cultured cells from three families with dihydropteridine reductase deficiency for a catalytically incompetent product of the mutant gene. No mutant enzyme was detected in one dihydropteridine reductase-deficient homozygote or in her parents. A second homozygote and both her parents had easily detectable concentrations of inactive mutant enzyme. In a third family one parent fitted into each of these categories.  相似文献   

14.
15.
Abstract— The tetrahydrofolate-dependent serine hydroxymethyl transferase ( l -serine: tetrahydrofolate 10-hydroxymethyl transferase, EC 2.1.2.1) reaction in rat or human brain homogenates incubated aerobically is dependent on added reducing agents for full activity in order to protect the readily oxidized substrate, tetrahydrofolate. In this role, 0.1 m m -NADH is as affective as 10m m -2-mercaptoethanol and it can be shown that the NADH prevents destruction of tetrahydrofolate incubated with brain homogenates. If the dihydropteridine reductase (NADPH:6,7-dihydropteridine oxidoreductase, EC 1.6.99.7) activity of the brain homogenate is inhibited by a specific antiserum, NADH, but not 2-mercaptoeth-anol, is no longer effective. Furthermore, an homogenate of a brain biopsy from a human lacking dihydropteridine reductase requires added dihydropteridine reductase for maximal stimulation by NADH of the serine hydroxymethyl transferase reaction. We conclude that dihydropteridine reductase mediates the NADH stimulation and can play a role in preserving tetrahydrofolate from oxidation. The rinding of greatly reduced folate levels in the brain biopsy from the human lacking dihydropteridine reductase supports this postulated role of dihydropteridine reductase in folate metabolism.  相似文献   

16.
Rat liver biopterin content and the activities of two enzymes involved in biopterin metabolism, sepiapterin reductase and dihydropteridine reductase, were not altered twenty-four hours after partial hepatectomy. This surgical procedure did, however, produce a vigorous regenerative response as verified by an increase in ornithine decarboxylase activity. The tetrahydrobiopterin-dependent activity of phenylalanine hydroxylase was increased in homogenates of regenerating liver. The pteridine requirements for the expression of this activation, and the behavior of the enzyme on calcium-phosphate cellulose columns suggest that elevated levels of cyclic adenosine monophosphate in regenerating liver induce phosphorylation and activation of phenylalanine hydroxylase. This increase in the activity of the primary enzyme of phenylalanine catabolism was interpreted as a compensatory response designed to maintain homeostasis prior to liver regeneration.  相似文献   

17.
NADH-specific dihydropteridine reductase [EC 1.6.99.7] was purified from mouse mastocytoma P-815 cells. Km values for NADH and NADPH were determined to be 1.4 microM and 32 microM, respectively, using tetrahydro-6-methylpterin. Molecular weight was 50,000, and subunit molecular weight was 25,000. The enzymes from P-815 and liver of host mouse (DBA/2) showed similar electrophoretic mobility on polyacrylamide gel. The P-815 enzyme reacted with antiserum against bovine liver NADH-specific dihydropteridine reductase, forming a single precipitin line.  相似文献   

18.
The addition of 8-bromo cyclic AMP, forskolin, theophylline, and 3-isobutyl-1-methylxanthine to the medium of PC 12 cells resulted in an increase in GTP cyclohydrolase I activity, but had no effect on dihydropteridine reductase activity, except theophylline which caused a decrease in dihydropteridine reductase activity at 96 h. GTP cyclohydrolase I activity peaked at 24 h and returned to normal 96 h after drug treatment. Cycloheximide decreased GTP cyclohydrolase I activity at 48 and 96 h, but had little effect on dihydropteridine reductase activity. The addition of reserpine selectively increased only GTP cyclohydrolase I activity. The addition of tetrahydrobiopterin and sepiapterin, however, coordinately inhibited both GTP cyclohydrolase I and dihydropteridine reductase activities. It appears that GTP cyclohydrolase I activity in PC 12 cells is regulated by cyclic AMP stimulation and by end-product inhibition, whereas dihydropteridine reductase activity is only subject to pterin inhibition.  相似文献   

19.
An antiserum to sheep liver dihydropteridine reductase has been prepared in rabbits. The antiserum cross-reacts with dihydropteridine reductases from human, rat and bovine tissues. Using this antiserum, it was not possible to detect any cross-reacting material in the liver of a phenylketonuric child whose genetic defect has been shown to be due to a lack of detectable dihydropteridine reductase activity.  相似文献   

20.
Potassium tetrachloroplatinate (K2PtCl4) inactivates dihydropteridine reductase from human brain in a time-dependent and irreversible manner. The inactivation has been followed by measuring enzyme activity and fluorescence changes. The enzyme is completely protected from inactivation by NADH, the pterin cofactor [quinonoid 6-methyl-7,8-dihydro(6H)pterin] and dithiothreitol. Evidence is presented that K2PtCl4 reacts at the active site and that (a) thiol group(s) is involved in, or is masked by, this reaction. K2PtCl4 is a stronger inhibitor of human brain dihydropteridine reductase that cis- and trans-diaminodichloroplatinum, cis-dichloro[ethylenediamine]platinum and K4Fe(CN)6, whereas H2PtCl6 is considerably weaker and (Ph3P)3RhCl is inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号