首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In this study, we demonstrated that the two ginger-derived components have a potent and unique pharmacological function in 3T3-L1 adipocytes via different mechanisms. Both pretreatment of 6-shogaol (6S) and 6-gingerol (6G) significantly inhibited the tumor necrosis factor-α (TNF-α) mediated downregulation of the adiponectin expression in 3T3-L1 adipocytes. Our study demonstrate that (1) 6S functions as a PPARγ agonist with its inhibitory mechanism due to the PPARγ transactivation, and (2) 6G is not a PPARγ agonist, but it is an effective inhibitor of TNF-α induced c-Jun-NH2-terminal kinase signaling activation and thus, its inhibitory mechanism is due to this inhibitory effect.  相似文献   

6.
Adipocytes can function as endocrine cells secreting a variety of adipocytokines including tumor necrosis factor (TNF)-α. Treatment of cultured mouse 3T3-L1 preadipocytes with TNF-α induced apoptosis, as was evident from increases in nuclear condensation and caspase-3 activity, but differentiated adipocytes during the maturation phase showed resistance to apoptosis by TNF-α. Antioxidants effectively reduced TNF-α-induced apoptosis in preadipocytes, indicating the involvement of reactive oxygen species. Exposure of preadipocytes to calcium ionophore A23187 reduced TNF-α-induced apoptosis, which was accompanied by increased production of prostaglandins (PGs) E2 and PGF2α. TNF-αpreferentially promoted gene expression of cyclooxygenase (COX)-2 without affecting that of COX-1. Consistently, NS-398, a COX-2 inhibitor, stimulated TNF-α-induced apoptosis, which was reversed by exogenous PGE2 and PGF2α. These results indicate that endogenous PGE2 and PGF2α synthesized by preadipocytes through the induction of COX-2 can serve as anti-apoptotic factors against apoptosis by TNF-α.  相似文献   

7.
In this study we aimed to identify the physiological roles of G protein-coupled receptor 84 (GPR84) in adipose tissue, together with medium-chain fatty acids (MCFAs), the specific ligands for GPR84. In mice, high-fat diet up-regulated GPR84 expression in fat pads. In 3T3-L1 adipocytes, co-culture with a macrophage cell line, RAW264, or TNFα remarkably enhanced GPR84 expression. In the presence of TNFα, MCFAs down-regulated adiponectin mRNA expression in 3T3-L1 adipocytes. Taken together, our results suggest that GPR84 emerges in adipocytes in response to TNFα from infiltrating macrophages and exacerbates the vicious cycle between adiposity and diabesity.  相似文献   

8.
Interaction between adipocytes and macrophages has been suggested to play a central role in the pathogenesis of obesity. Ceramide, a sphingolipid de novo synthesized from palmitate, is known to stimulate pro-inflammatory cytokine secretion from multiple types of cells. To clarify whether de novo synthesized ceramide contributes to cytokine dysregulation in adipocytes and macrophages, we observed cytokine secretion in mature 3T3-L1 adipocytes (L1) and RAW264.7 macrophages (RAW) cultured alone or co-cultured under the suppression of de novo ceramide synthesis.Palmitate enhanced ceramide accumulation and stimulated the expression and secretion of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) in L1. The suppression of serine-palmitoyl transferase, a rate-limiting enzyme of de novo ceramide synthesis, by myriocin or siRNA attenuated those palmitate-induced alterations, and a ceramide synthase inhibitor fumonisin B1 showed similar results. In contrast, the inhibitor of sphingosine kinase or a membrane-permeable ceramide analogue augmented the cytokine secretion. Myriocin effects on the palmitate-induced changes were not abrogated by toll-like receptor-4 blockade. Although palmitate stimulated RAW to secrete tumor necrosis factor-α (TNF-α), it did not significantly increase ceramide content, and neither myriocin nor fumonisin B1 attenuated the TNF-α hypersecretion. The co-culture of L1 with RAW markedly augmented IL-6 and MCP-1 levels in media. Myriocin or fumonisin B1 significantly lowered these cytokine levels and suppressed the gene expression of TNF-α and MCP-1 in RAW and of IL-6 and MCP-1 in L1.In conclusion, de novo synthesized ceramide partially mediates the palmitate effects on pro-inflammatory adipokines and is possibly involved in the interaction with macrophages.  相似文献   

9.
Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF-α production could explain the decline of adiponectin levels and alterations of isomer composition in plasma of obese insulin-resistant subjects.  相似文献   

10.
Epidemiological data have suggested that drinking green tea is negatively associated with diabetes, and adipose oxidative stress may have a central role in causing insulin resistance, according to recent findings. The aim of this work is to elucidate a new mechanism for green tea's anti-insulin resistance effect. We used obese KK-ay mice, high-fat diet-induced obese rats, and induced insulin resistant 3T3-L1 adipocytes as models. Insulin sensitivity and adipose reactive oxidative species (ROS) levels were detected in animals and adipocytes. The oxidative stress assay and glucose uptake ability assay were performed, and the effects of EGCG on insulin signals were detected. Green tea catechins (GTCs) significantly decreased glucose levels and increased glucose tolerance in animals. GTCs reduced ROS content in both models of animal and adipocytes. EGCG attenuated dexamethasone and TNF-α promoted ROS generation and increased glucose uptake ability. EGCG also decreased JNK phosphorylation and promoted GLUT-4 translocation. EGCG and GTCs could improve adipose insulin resistance, and exact this effect on their ROS scavenging functions.  相似文献   

11.
12.
3-Deoxyglucosone (3DG) is a highly reactive dicarbonyl species, and its accumulation evokes carbonyl and oxidative stress. Our recent data reveal the role of 3DG as an independent factor for the development of prediabetes and suggest that intestine could be its novel target tissue. The present study investigated whether exogenous 3DG increases intestinal permeability by triggering carbonyl and oxidative stress, thus contributing to β-cell dysfunction. Rats were administered 3DG for two weeks by gastric gavage. Then levels of insulin, ROS, MDA, SOD, NLRP3, TNF-α and IL-1β in blood plasma as well as the ROS level and content of TNF-α and IL-1β in pancreas were assessed. Also, the expression of E-cadherin and ZO-1 as well as levels of 3DG, protein carbonylation, ROS, TNF-α and IL-1β in colon were determined. The 3DG-treated rats showed an elevation in systemic oxidative stress (ROS, MDA and SOD) and in inflammation (TNF-α and IL-1β), decreased plasma insulin level 15 min after the glucose load, and increased levels of TNF-α, IL-1β and ROS in pancreatic tissue. In colon tissues of the 3DG-treated rats, decreased E-cadherin expression and increased ROS production as well as an elevation of TNF-α and IL-1β levels were observed. Interestingly, elevation of colon protein carbonylation was observed in the 3DG-treated rats that displayed 3DG deposition in colon tissues. We revealed for the first time that 3DG deposition in colon triggers carbonyl and oxidative stress and, as a consequence, impairs gut permeability. The enhanced intestinal permeability caused by 3DG deposition in colon results in systemic and pancreatic oxidative stress and inflammatory process, contributing to the development of β-cell dysfunction.  相似文献   

13.
Telomere shortening is emerging as a biological indicator of accelerated aging and aging-related diseases including type 2 diabetes. While telomere length measurements were largely done in white blood cells, there is lack of studies on telomere length in relation to oxidative stress in target tissues affected in diabetes. Therefore, the aim of this study is to induct oxidative stress in adipocytes and to test whether these adipocytes exhibit shortened telomeres, senescence and functional impairment. 3T3-L1 adipocytes were subjected to oxidative stress and senescence induction by a variety of means for 2 weeks (exogenous application of H2O2, glucose oxidase, asymmetric dimethylarginine (ADMA) and glucose oscillations). Cells were probed for reactive oxygen species generation (ROS), DNA damage, mRNA and protein expression of senescent and pro-inflammatory markers, telomere length and glucose uptake. Compared to untreated cells, both ROS generation and DNA damage were significantly higher in cells subjected to oxidative stress and senescence. Adipocytes subjected to oxidative stress also showed shortened telomeres and increased mRNA and protein expression of p53, p21, TNFα and IL-6. Senescent cells were also characterized by decreased levels of adiponectin and impaired glucose uptake. Briefly, adipocytes under oxidative stress exhibited increased ROS generation, DNA damage, shortened telomeres and switched to senescent/pro-inflammatory phenotype with impaired glucose uptake.  相似文献   

14.
《Cytokine》2015,73(2):220-223
Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein member of LGI family. We previously reported that LGI3 increased in obese adipose tissues and suppressed adipogenesis through its receptor, ADAM23. We proposed that LGI3 may be a pro-inflammatory adipokine secreted predominantly by preadipocytes and macrophages. In this study, we showed that LGI3 and tumor necrosis factor-α (TNF-α) upregulated each other in 3T3-L1 cells. Treatment of 3T3-L1 preadipocytes with LGI3 protein increased TNF-α mRNA and protein. LGI3 treatment led to NF-κB activation and binding to an NF-κB binding site (−523 to −514) in TNF-α promoter. TNF-α treatment increased mRNA and protein expression of LGI3 and ADAM23. TNF-α increased NF-κB binding to a predicted binding site (−40 to −31) in LGI3 promoter. High fat diet-fed mice showed that LGI3 and TNF-α were increased and colocalized in adipose tissue inflammation. Taken together, these results suggested that mutual upregulation of LGI3 and TNF-α may play a role in adipose tissue inflammation in obesity.  相似文献   

15.
Fucoxanthin, a marine carotenoid found in edible brown seaweeds, attenuates white adipose tissue (WAT) weight gain and hyperglycemia in diabetic/obese KK-Ay mice, although it does not affect these parameters in lean C57BL/6J mice. In perigonadal and mesenteric WATs of KK-Ay mice fed fucoxanthin, mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α), which are considered to induce insulin resistance, were markedly reduced compared to control mice. In contrast to KK-Ay mice, fucoxanthin did not alter MCP-1 and TNF-α mRNA expression levels in the WAT of lean C57BL/6J mice. Interleukin-6 (IL-6) and plasminogen activator inhibitor-1 mRNA expression levels in WAT were also decreased by fucoxanthin in KK-Ay mice. In differentiating 3T3-F442A adipocytes, fucoxanthinol, which is a fucoxanthin metabolite found in WAT, attenuated TNF-α-induced MCP-1 and IL-6 mRNA overexpression and protein secretion into the culture medium. In addition, fucoxanthinol decreased TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA expression in RAW264.7 macrophage-like cells stimulated by palmitic acid. These findings indicate that fucoxanthin regulates mRNA expression of inflammatory adipocytokines involved in insulin resistance, iNOS, and COX-2 in WAT and has specific effects on diabetic/obese KK-Ay mice, but not on lean C57BL/6J mice.  相似文献   

16.
Elevated circulating concentrations of interleukin-18 (IL-18), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor-1 (PAI-1) and decrease of adiponectin are associated with obesity-related diseases. The mechanism that mediates the aberrant production of the adipokines remains poorly understood. The aim of this study was to investigate the effect of intermittent high glucose on the expression of IL-18, MCP-1, and PAI-1 and adiponectin in 3T3-L1 adipocytes. 3T3-L1 adipocytes were incubated for 24 h in media containing different glucose concentrations: 5 mmol/l, 20 mmol/l and a daily alternating 5 or 20 mmol/l glucose, with or without the addition of 1.0 mmol/l N-acetylcysteine (NAC). The expression and secretion of IL-18, MCP-1, PAI-1, and adiponectin were determined by real-time RT-PCR and ELISA, respectively. The production of reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine (8-OHdG) were measured. Stable high glucose significantly increased expression and secretion of IL-18, MCP-1, and PAI-1, and reduced adiponectin expression and secretion compared to normal glucose conditions. These effects were significantly greater under intermittent high glucose conditions compared to stable high glucose. The level of ROS and 8-OHdG were significantly elevated under both intermittent and stable high glucose conditions, the effect being greater under intermittent high glucose. The intermittent glucose was more effective in triggering the generation of ROS than stable high glucose. The adding of the NAC, a specific pharmacological inhibitor of ROS, normalized the expression of these adipokines and the levels of ROS and 8-OHdG under both stable and intermittent glucose conditions. Intermittent high glucose induces a greater aberrant production of key adipokines than stable high glucose, and this effect seems to be related to over-production of ROS.  相似文献   

17.
《Cytokine》2015,73(2):130-134
Effect of female sex hormones on the production/release of adipocyte-derived cytokines has been debatable. Furthermore, whether the cellular signaling triggered by these hormones involve Rho-kinase has not been investigated yet. Therefore, in this study, effects of 17β-estradiol and progesterone as well as the Rho-kinase inhibitor, Y-27632 on the level of adipokines such as resistin, adiponectin, leptin, TNF-α and IL-6 were investigated in 3T3-L1-derived adipocytes. Differentiation was induced in the post-confluent preadipocytes by the standard differentiation medium (Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum together with the mixture of isobutylmethylxanthine, dexamethasone and insulin) in the presence of 17β-estradiol (10−8–10−7 M), progesterone (10−6–10−5 M), the Rho-kinase inhibitor, Y-27632 (10−5 M) and their combination for 8 days. Measurements of the adipokines were performed in the culturing medium by ELISA kits using specific monoclonal antibodies. 17β-estradiol elevated resistin but decreased adiponectin and IL-6 levels; however, it did not alter the concentration of leptin and TNF-α. Y-27632 pretreatment inhibited the rise of resistin and the fall of adiponectin by 17β-estradiol without any effects by its own. Progesterone did not change resistin, leptin and TNF-α level; however, it elevated adiponectin and decreased IL-6 production. Neither 17β-estradiol nor Y-27632 was able to antagonize the increase of adiponectin and the reduction of IL-6 levels by progesterone. While Y-27632 alone lowered IL-6 level, it increased leptin and TNF-α concentration without altering resistin and adiponectin. In conclusion, 17β-estradiol could modify adipokine production in 3T3-L1 adipocytes with the actions some of which involve Rho-kinase mediation.  相似文献   

18.
Inflammatory cytokines have been linked to obesity-related insulin resistance. To investigate the effect of TNF-α, an inflammatory cytokine, on insulin action, C57BL/6J mice were treated with TNF-α for 7 days after which we examined the in vivo effects of TNF-α on glucose tolerance and insulin sensitivity with IV glucose tolerance tests and hyperinsulinemic-euglycemic clamps. In addition, we analyzed the in vivo effect of TNF-α on several metabolism-related genes and adipocytokines implicated in the development of insulin resistance. TNF-α treatment resulted in markedly increased fasting blood glucose, insulin and free fatty acids (FFA) levels and reduced glucose tolerance. During the clamps, the rates insulin-stimulated whole body (GRd) and skeletal muscle glucose uptake (MGU) and insulin’s ability to suppress hepatic glucose production (HGP) were decreased in TNF-α treated animals, indicating insulin resistance. In addition, both PPARγ and ATGL mRNA expression in adipose tissues as well as ATGL protein levels in plasma were downregulated. Moreover, adipose mRNA expression and plasma protein levels of adiponectin and visfatin were significantly down-regulated. We conclude that the alterations of PPARγ, ATGL, adiponectin and visfatin may contribute to the development of insulin resistance mediated by TNF-α.  相似文献   

19.
Stearoyl-CoA desaturase 1 (SCD1) deficiency protects mice from diet-induced obesity and insulin resistance. To understand the tissue-specific role of SCD1 in energy homeostasis, we have generated mice with an adipose-specific knockout of Scd1 (AKO), and report here that SCD1 deficiency increases GLUT1 expression in adipose tissue of AKO mice, but not global SCD1 knockout (GKO) mice. In 3T3-L1 adipocytes treated with an SCD inhibitor, basal glucose uptake and the cellular expression of GLUT1 were significantly increased while GLUT4 expression remained unchanged. Consistently, adipose-specific SCD1 knockout (AKO) mice had significantly elevated GLUT1 expression, but not GLUT4, in white adipose tissue compared to Lox counterparts. Concurrently, adiponectin expression was significantly diminished, whereas TNF-α expression was elevated. In contrast, in adipose tissue of GKO mice, GLUT4 and adiponectin expression were significantly elevated with lowered TNF-α expression and little change in GLUT1 expression, suggesting a differential responsiveness of adipose tissue to global- or adipose-specific SCD1 deletion. Taken together, these results indicate that adipose-specific deletion of SCD1 induces GLUT1 up-regulation in adipose tissue, associated with decreased adiponectin and increased TNF-α production, and suggest that GLUT1 may play a critical role in controlling glucose homeostasis of adipose tissue in adipose-specific SCD1-deficient conditions.  相似文献   

20.
Adipocyte secretes bioactive proteins called adipocytokines, and biosynthesis of secretory proteins requires molecular chaperones and folding enzymes in endoplasmic reticulum (ER). ER chaperones are known to be induced by unfolded protein response (UPR) and growth factors, however, it has not been determined how ER chaperones expression is regulated in adipocytes. Here we show that insulin treatment induced GRP78 and ERO1L mRNA levels in 3T3-L1 adipocytes. Insulin also upregulated CHOP mRNA levels, but did not induce phosphorylation of eIF2α. Pretreatment with insulin protected 3T3-L1 adipocytes against thapsigargin-mediated phosphorylation of eIF2α but did not against DTT-mediated one. In vivo mice study showed that GRP78 and CHOP expressions were regulated by feeding conditions. These results suggest that insulin signaling is important to induce mRNA expressions of GRP78 and CHOP, and may have a protective role against UPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号