首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
D B Yarosh  A Pe?a  D A Brown 《Biomarkers》2005,10(2-3):188-202
Polymorphisms in DNA repair genes have been suggested to increase the risk of cancer and other diseases, but the epidemiological studies are often not consistent, and the results confusing. We have examined the effect of polymorphisms in base and nucleotide excision-repair genes, as well as regulatory and signalling genes, on cytotoxic sensitivity of tumour cell lines used for screening anticancer drugs by the National Cancer Institute. It was found that for the TP53 P72R and ERCC2 D312N polymorphisms, the heterozygous genotype was most sensitive, while for the OGG1 S326C and NOS3 g.-786T>C polymorphisms the homozygous-variant genotype was most sensitive. The biggest increase in sensitization was found with the XRCC1 R399Q homozygous dominant genotype. The sensitization was found across a broad range of drugs, indicating the importance of DNA repair responses. It was also found that while the other gene polymorphisms were in Hardy-Weinberg equilibrium, the TP53 P72R heterozygous genotype was relatively depleted. For the OGG1 polymorphism, the repair of 8-oxo-guainine from DNA was measured in three panel cell lines that differed in their OGG1 genotype. The cell line with the homozygous-variant genotype had a much poorer repair than the other genotypes, as predicted. The correlation of polymorphisms with cytotoxicity may be an approach to understanding their effects which may be difficult to reveal in epidemiological studies.  相似文献   

2.
The genes of the glutathione S-transferase (GST) family encode enzymes that appear to be critical in cellular protection against the cytotoxic effects, whereas p53 is a tumor suppressor gene. Despite a large number of studies on germline polymorphisms of GSTM1, GSTT1 and p53 genes, there have been very few reports on genotyping of these genes in human malignant tumor cells. In this study, we investigated GSTM1, GSTT1 and p53 codon 72 polymorphisms in a variety of human tumor cell lines originating from different organs to clarify tissue-specific polymorphic frequency of these genes in human solid tumors. The GSTM1 and GSTT1 genetic polymorphisms were evaluated using multiplex PCR techniques and PCR-RFLP analysis was conducted to identify p53 codon 72 genotypes. Gene expression of GSTM1 or GSTT1 was detected by RT-PCR in the cells with respective present genotype for each. Polymorphisms of p53 codon 72 detected by PCR-RFLP were also confirmed using SSCP and sequence analyses. GSTM1 and GSTT1 genotypes were various in 104 cell lines examined. Null GSTM1 genotype was dominant in small cell lung, kidney and ovarian carcinoma cells, whereas null GSTT1 genotype was dominant in cervical and endometrial carcinoma cells. GSTM1 and GSTT1 genotypes in ovarian carcinoma cells were quite similar to those in small cell lung carcinoma cells. Polymorphic frequency of p53 codon 72 was also various among the cells, however, the Pro allele was found in only 1 of 6 kidney, 14 cervical and 4 endometrial carcinoma cell lines. There was a significant difference in GSTM1 and p53 genotypes between 34 small cell and 24 non small cell lung carcinoma cells (P < 0.01). Combined study on the distribution of GSTM1, GSTT1 and p53 genotypes revealed that null GSTM1 genotype was associated with the Arg allele of p53 codon 72 in 58 lung carcinoma cells and null GSTT1 genotype was associated with the Pro/Pro homozygote in 104 tumor cell lines examined. This is the first study examining GSTM1, GSTT1 and p53 codon 72 polymorphisms in a variety of human solid tumor cells and suggesting that polymorphic frequency of these genes may be tissue- and organ-specific. The molecular interaction between GST gene defects and p53 codon 72 genotype in the development of human malignant tumors should be further investigated.  相似文献   

3.
Although TP53 alterations have been studied in human tumors, data considering the role of two common TP53 polymorphisms (Pro72Arg in codon 72 and Ins16bp in intron 3) and their associations with TP53 mutations in gastric cancer are very limited. Thus, we analyzed these parameters taking into consideration the clinicopathological data. DNA from 106 gastric tumor samples was available for TP53 Pro72Arg and TP53 Ins16bp polymorphism genotyping by PCR-RFLP and PCR, respectively. The mutational status of the TP53 exons 5-7 was assessed by the single-strand conformational polymorphism test. The TP53 72ArgArg genotype was statistically associated with patients aged ≥65 years (p = 0.039), and the intron 3 A2A2 genotype was correlated with late-stage tumors (III and IV; p = 0.043). Considering both polymorphisms, a negative correlation between the TP53 Pro-A1 haplotype and age <65 years (r = -0.211; p = 0.030) was found. Taking into account the TP53 mutations, the Pro/Pro genotype was positively correlated with the presence of exon 7 mutations (p = 0.049), and a correlation between this genotype and the number of mutations in TP53 was observed (p = 0.019). This study corroborates the understanding of TP53 polymorphisms in gastric carcinogenesis, especially regarding the genetic features in tumor onset and prognosis.  相似文献   

4.
Identification of higher risk individuals carrying genetic polymorphisms responsible for reduced DNA repair capacity has substantial preventive implications as these individuals could be targeted for cancer prevention. We have conducted a study to assess the predictivity of the OGG1, XRCC1 and XRCC3 genotypes and the in vitro single strand break repair phenotype for the induction of genotoxic effects. At the population level, a significant contribution of the OGG1 genotypes to the in vitro DNA strand break repair capacity was found. At an individual level, the OGG1 variants Ser/Cys and Cys/Cys genotypes showed a slower in vitro DNA repair than the Ser/Ser OGG1genotype. A multivariate analysis performed with genotypes, age, cumulative dose, exposure status and smoking as independent variables indicated that in the control population, repair capacity is influenced by age and OGG1 polymorphisms. In the exposed population, DNA damage is greater in older men and in smokers. Repair capacity is slower in individuals with Ser/Cys or Cys/Cys OGG1 genotypes compared to those with the Ser/Ser OGG1 genotype. Micronuclei (MN) frequencies increased with age and the cumulative dose of gamma-rays. Analysis of the total population revealed that genetic polymorphisms in XRCC1 resulted in higher residual DNA (RDNA) values and the Met/Met variant of XRCC3 resulted in an increased frequency of micronuclei. The analysis confirms that MN frequencies are reliable biomarkers for the assessment of genetic effects in workers exposed to ionising radiation (IR). A combined analysis of the three genotypes, OGG1, XRCC1 and XRCC3 polymorphisms is advised in order to assess individual susceptibility to ionising radiation. As an alternative or complement, the in vitro DNA strand break repair phenotype which integrates several repair pathways is recommended. Smokers with OGG1 polymorphisms who are exposed to ionising radiation represent a specific population requiring closer medical surveillance because of their increased mutagenic/carcinogenic risk.  相似文献   

5.
Mutations in the WRN or the TP53 genes lead to spontaneous genetic instability, an elevated risk of tumor formation, and sensitivity to compounds that interfere with DNA replication, such as camptothecin and DNA interstrand cross-linking drugs. We investigated the hypothesis that WRN and TP53 are involved in cellular responses to DNA replication-blocking lesions by exposing WRN deficient and TP53 mutant lymphoblastoid cell lines (LCLs) to 1-beta-d-arabinofuranosylcytosine (AraC) and bleomycin. Loss of WRN or TP53 function resulted in induction of apoptosis and lesser proliferative survival in response to AraC and bleomycin. WRN and TP53 operate in a shared DNA damage response pathway, since in cells in which TP53 was inactivated by SV-40 transformation, no difference in AraC and bleomycin sensitivity was found regardless of WRN status. In contrast to TP53 mutant LCLs, WRN-deficient cells showed unaffected cell cycle arrest after AraC and bleomycin exposure, which indicates that WRN is not involved in DNA damage-activated cell cycle arrest. Neither WRN nor TP53 deficiency affected cellular recovery from exposure to AraC and bleomycin, which disagrees with a direct role in repair of these DNA lesions. Our results indicate that WRN and TP53 perform different functions in a shared DNA damage response pathway.  相似文献   

6.
The contribution of single nucleotide polymorphisms (SNPs) in base excision repair (BER) genes to the risk of breast cancer (BC) was evaluated by focusing on two key genes: apurinic/apyrimidinic endonuclease 1 (APEX1) and 8-oxoguanine DNA glycosylase (OGG1). Genetic variations in the genes encoding these DNA repair enzymes may alter their functions and increase susceptibility to carcinogenesis. The aim of this study was to analyze polymorphisms in two BER genes, exploring their associations and particularly the combined effects of these variants on BC risk in a Korean population. Three SNPs of two BER genes were genotyped using the Illumina GoldenGate™ method. In total, 346 BC patients and 361 cancer-free controls were genotyped for these BER gene polymorphisms and analyzed for their correlation with BC risk in multiple logistic regression models. Multiple logistic regression models adjusted for age, family history of BC, and body mass index were used. The APEX1 Asp148Glu polymorphism was weakly associated with BC risk. The combined analysis among the BER genes, however, showed significant effects on BC risk. The APEX1 Asp148Glu carrier, in combination with OGG1 rs2072668 and OGG1 Ser326Cys, was strongly associated with an increased risk of BC. Moreover, the combination of the C–C haplotype of OGG1 with the APEX1 Asp148Glu genotype was also associated with an additive risk effect of BC [ORs = 2.44, 2.87, and 3.50, respectively]. The combined effect of APEX1 Asp148Glu was found to be associated with an increased risk of BC. These results suggest that the combined effect of different SNPs within BER genes may be useful in predicting BC risk.  相似文献   

7.
To elucidate the role of predictive factors on individual's drug response, based on genetic variation, we examined the association between eight germline polymorphisms in genes involved in protection against oxidative stress, apoptosis, oncogenic transformation, proliferation, immune response and DNA repair (TP53, NQO1, IL6, TLR4 and XRCC1) and the pathological response to anthracycline-based neoadjuvant chemotherapy in 70 patients with breast cancer. The DNA was genotyped for eight polymorphisms in five genes (TP53, NQO1, IL6, TLR4 and XRCC1) by 5'-exonuclease (TaqMan?) technology. Fisher's exact test was used to evaluate the association between genotype, clinicopathological parameters and pathological response. A good pathological response, defined as a pathological complete response or residual isolated invasive tumor cells, was found significantly more frequently for estrogen (ER) and progesterone receptor (PR) negative breast carcinomas compared to ER and PR positive and ER or PR positive carcinomas, respectively (43.5 vs. 37.5 and 10.3?%, p?=?0.006), and was significantly associated with high tumor grade (G3) (p?=?0.002). A non-significant trend towards a good pathological response was shown in patients carrying the Arg/Arg or Arg/Pro TP53 codon 72 gene variant compared to those harboring the Pro/Pro variant (17.6 or 37.9?% vs. 0; p?=?0.071). No association was found between NQO1 Pro187Ser, IL6 -174G>C, TLR4 Asp299Gly and Thr399Ile, and XRCC1 Arg194Trp, Arg399Gln and Arg280His and pathological response. The present study shows hormone receptor status and tumor grade as predictors for pathological response to neoadjuvant anthracycline-based chemotherapy. Among various functional germline polymorphisms, a potential predictive value was only found for the TP53 Arg72Pro gene variant.  相似文献   

8.
Ischemia–reperfusion (I/R) injury, by inducing oxidative DNA damage, is one of the leading causes of increased patient morbidity and mortality in coronary artery by-pass grafting (CABG) surgery. 8-Hydroxyguanine (8-OHG) is an important oxidative base lesion. The 8-oxoguanine glycosylase (hOGG1) and hMTH1, which have several polymorphisms, remove 8-OHdG from the nucleotide pool. We investigated whether there are any correlations the biomarkers of oxidative stress (superoxide dismutase; SOD and 8-OHdG in serum) with genotype for two DNA repair genes (OGG1 and MTH1) and an antioxidant enzyme gene (manganese superoxide dismutase; MnSOD). Therefore, we measured DNA damage (8-hydroxy-2-deoxyguanosine; 8-OHdG) and endogenous antioxidant activity (SOD) at five different time points (T1, before anesthesia; T2, after anesthesia; T3, after ischemia; T4, after reperfusion and T5, after surgery). and also, MnSOD and MutT homolog 1 (MTH1) genes polymorphisms were genotyped by polymerase chain reaction–restricted fragment length polymorphism (PCR–RFLP) in patients undergoing coronary artery by-pass grafting (CABG) surgery. No statistically significant differences were detected in the levels of 8-OHdG and SOD in serum in terms of OGG1 Ser326Cys, MTH1 Val83Met and MnSOD Ala16Val genetic polymorphisms. Our results suggest that OGG1, MTH1 and MnSOD gene polymorphisms are not genetic risk factors for I/R injury.  相似文献   

9.
Cheng H  Ma B  Jiang R  Wang W  Guo H  Shen N  Li D  Zhao Q  Wang R  Yi P  Zhao Y  Liu Z  Huang T 《Molecular biology reports》2012,39(9):9265-9274
The tumor suppressor gene TP53 and its negative regulator murine double minute 2 are involved in multiple cellular pathways. Two potentially functional single nucleotide polymorphisms (SNPs) MDM2 SNP309 and TP53 R72P have been extensively investigated to be associated with breast cancer risk. However, the original studies as well as the subsequent meta-analysis, have yielded contradictory results for the individual effect of the two SNPs on breast cancer risk, plus that conflicting results also existed for the combined effects of MDM2 SNP309 and TP53 R72P on breast cancer risk. This meta-analysis aimed to clarify the individual and combined effects of these two genes on breast cancer risk. We performed a meta-analysis of publications with a total 9,563 cases and 9,468 controls concerning MDM2 SNP309 polymorphism and 19,748 cases and 19,962 controls concerning TP53 R72P. Odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of the association. In overall meta-analysis, individuals with the MDM2 SNP309TG genotype were associated with a borderline higher breast cancer risk than those with TT genotype (OR = 1.11, 95 % CI: 1.00-1.24, P (heterogeneity) = 0.007), whereas the TP53 R72P CC or GC genotype had no effects on breast cancer risk. In the stratified analyses, a significant association between MDM2 SNP309 and breast cancer risk were observed in Asian, but null significant association between TP53 R72P and breast cancer risk were found even in various subgroups. Moreover, no significant combined effects of MDM2 SNP309 and TP53 R72P were observed on breast cancer risk. The borderline association between MDM2 SNP309 and breast cancer risk in overall analysis should be treated with caution, and no significant combined effects for the two SNPs on breast cancer risk suggested functional investigations warranted to explore the molecular mechanism of the TP53-MDM2 circuit genes.  相似文献   

10.
Genetic polymorphisms in DNA repair genes may impact individual variation in DNA repair capacity and alter cancer risk. In order to examine the association of common genetic variation in the base-excision repair (BER) pathway with bladder cancer risk, we analyzed 43 single nucleotide polymorphisms (SNPs) in 12 BER genes (OGG1, MUTYH, APEX1, PARP1, PARP3, PARP4, XRCC1, POLB, POLD1, PCNA, LIG1, and LIG3). Using genotype data from 1,150 cases of urinary bladder transitional cell carcinomas and 1,149 controls from the Spanish Bladder Cancer Study we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, gender, region and smoking status. SNPs in three genes showed significant associations with bladder cancer risk: the 8-oxoG DNA glycosylase gene (OGG1), the Poly (ADP-ribose) polymerase family member 1 (PARP1) and the major gap filling polymerase-β (POLB). Subjects who were heterozygous or homozygous variant for an OGG1 SNP in the promoter region (rs125701) had significantly decreased bladder cancer risk compared to common homozygous: OR (95%CI) 0.78 (0.63–0.96). Heterozygous or homozygous individuals for the functional SNP PARP1 rs1136410 (V762A) or for the intronic SNP POLB rs3136717 were at increased risk compared to those homozygous for the common alleles: 1.24 (1.02–1.51) and 1.30 (1.04–1.62), respectively. In summary, data from this large case-control study suggested bladder cancer risk associations with selected BER SNPs, which need to be confirmed in other study populations. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The cell's susceptibility to DNA damage and its ability to repair this damage are important for cancer induction, promotion and progression. In the present work we determined the level of basal (total endogenous) and endogenous oxidative DNA damage as well as polymorphism of the DNA repair genes: RAD51 (135 G/C), XRCC3 (Thr241Met), OGG1 (Ser326Cys) and XPD (Lys751Gln) in peripheral blood lymphocytes of 41 breast cancer patients and 48 healthy individuals. DNA damage was evaluated by alkaline comet assay with DNA repair enzymes: Endo III and Fpg, preferentially recognizing oxidized DNA bases. The genotypes of the polymorphisms were determined by restriction fragment length polymorphism PCR. We observed a strong association between breast cancer occurrence and the genotypes C/C of the RAD51-135G/C polymorphism, Ser/Ser of the OGG1-Ser326Cys and Lys/Gln of the XPD-Lys751Gln, whereas the genotypes G/C of the RAD51-135G/C and Lys/Lys of the XPD-Lys751Gln exerted a protective effect against breast cancer. We also found that individuals with the G/C genotype of the RAD51-135G/C polymorphism and with the Lys/Lys genotype of the XPD-Lys751Gln polymorphism displayed a lower extent of basal and oxidative DNA damage. A strong association between higher level of oxidative DNA damage and the Lys/Gln genotype of the latter polymorphism was found. We also correlated genotypes with clinical characteristics of breast cancer patients. We observed a strong association between the G/C genotype of the RAD51-135 G/C polymorphism and the expression of the progesterone receptor and between both alleles of the OGG1-Ser326Cys polymorphism and lymph node metastasis. Our results suggest that the polymorphism of the RAD51, OGG1 and XPD genes may be linked with breast cancer by the modulation of the cellular response to oxidative stress and these polymorphisms may be considered as markers in breast cancer along with the genetic or/and environmental indicators of oxidative stress.  相似文献   

12.
13.
Gene polymorphisms,apoptotic capacity and cancer risk   总被引:1,自引:0,他引:1  
Programmed cell death has been implicated in various aspects of cancer development. Apoptotic capacity is a subject of significant interindividual variations, which are largely attributed to hereditary traits. Single nucleotide polymorphisms (SNPs) located within cell death genes may influence cancer risk in various ways. Low activity of apoptosis may favor cancer development because of the failure to eliminate cellular clones carrying DNA damage and propensity to inflammation, but may also protect against malignancy due to preservation of antitumor immune cells. Phenotyping studies assessing cell death rate in cancer patients versus healthy controls are limited in number and produced controversial results. TP53 R72P polymorphism is the only SNP whose functional impact on apoptotic response has been replicated in independent investigations. Intriguingly, meta-analysis of TP53 genotyping studies has provided evidence for the association between apoptosis-deficient TP53 genotype and tumor susceptibility. Systematic analysis of cancer-predisposing relevance of other apoptotic gene SNPs remains to be done. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The aim of this study was to evaluate the association of polymorphisms in genes encoding three key proteins of DNA base excision repair (BER): the OGG1 Ser326Cys, the MUTYH Tyr165Cys and the XRCC1 Arg399Gln with the risk of childhood acute lymphoblastic leukemia (ALL). Our study included 97 children patients with ALL (mean age 5.4 ± 2.5) and 131 healthy children (mean age 6.2 ± 2.8) used as controls. Genetic polymorphisms in BER pathway genes were examined using PCR and restriction fragment length polymorphism (RFLP). We have demonstrated that the OGG1 Cys/Cys genotype increases the risk of ALL (OR 5.36) whereas the Ser/Ser genotype variant strongly reduces the risk of this cancer among Polish children (OR 0.45). Although we did not observe the differences in single nucleotide polymorphisms (SNPs) in MUTYH and XRCC1 genes between control group and children with ALL, we have shown that the combined genotypes of examined genes can modulate the risk of childhood ALL in Polish population. We found that the combined genotype Arg/Gln–Cys/Cys of XRCC1/OGG1 (OR 3.83) as well as the Cys/Cys–Tyr/Tyr of OGG1/MUTYH (OR 6.75) increases the risk of ALL. In contrast, the combined genotype Arg/Arg–Ser/Ser of XRCC1/OGG1 (OR 0.40) as well as the Ser/Ser–Tyr/Tyr of OGG1/MUTYH (OR 0.43) played a protective role against this malignant disease. In conclusion, we suggest that polymorphisms of BER genes may be used as an important predictive factor for acute lymphoblastic leukemia in children.  相似文献   

15.
Oxidatively damaged DNA base lesions are considered to be mainly repaired by 8-oxoguanine DNA glycosylase (OGG1) mediated pathways. We investigated the effect of the OGG1 Ser326Cys polymorphism on the level and repair of oxidatively damaged DNA in mononuclear blood cells (MNBC) by means of the comet assay. We collected blood samples from 1,019 healthy subjects and genotyped for the OGG1 Ser326Cys polymorphism. We found 49 subjects homozygous for the variant genotype (Cys/Cys) and selected same numbers of age-matched subjects with the heterozygous (Ser/Cys) and homozygous wild-type genotype (Ser/Ser). Carriers of the Cys/Cys genotype had higher levels of formamidopyrimidine DNA glycosylase (FPG) sensitive sites in MNBC (0.31 ± 0.03 lesions/10(6)bp) compared to Ser/Ser (0.19 ± 0.02 lesions/10(6)bp, P<0.01). The level of hOGG1 sensitive sites in MNBC from the Ser326Cys carriers (0.19 ± 0.16 lesions/10(6) bp) was also higher compared to the Ser/Ser genotype (0.11 ± 0.09 lesions/10(6) bp, P<0.05). Still, there was no genotype-related difference in DNA repair incision activity of MNBC extracts on nucleoids with oxidatively damaged DNA induced by Ro19-8022/white light (P=0.20). In addition, there were no differences in the expression of OGG1 (P=0.69), ERCC1 (P=0.62), MUTYH (P=0.85), NEIL1 (P=0.17) or NUDT1 (P=0.48) in whole blood. Our results indicate that the OGG1 Ser326Cys polymorphism has limited influence on the DNA repair incisions by extracts of MNBC, whereas the apparent increased risk of cancer in subjects with the Cys/Cys genotype may be because of higher levels of oxidatively damaged DNA.  相似文献   

16.
The p53 protein exerts different cellular functions, and recent findings have demonstrated its influence on the cascade of skin pigmentation during UV exposure. Among TP53 gene polymorphisms, the most studied is the G to C transversion in exon 4 at codon 72, which results in three distinct genotypes, Arg/Arg, Pro/Pro and Arg/Pro, each one encoding different p53 isoforms. Therefore, this study aimed to determine the relationship between TP53 codon 72 polymorphism and skin protection against sunburn. Genomic DNA was extracted from peripheral blood samples and genotyping was performed by PCR and confirmed by restriction enzyme digestion. The genotype frequency was 50% for Arg/Arg and 14.6% for Pro/Pro genotype. The frequency of heterozygous subjects was 35.4%. In our population, p53 genotypes were in Hardy-Weinberg (HW) equilibrium (X2 HM less than 3.84), showing a predominance of arginine allele (total Arg allele frequency of 68%). No significant association between p53 genotype and skin colour, hair or eye colour and susceptibility to sun exposure was found. However, further analysis demonstrated a significant association between the genotype Pro/Pro and blue/green eyes among participants who presented redness (P=0.016). Our findings indicate susceptibility to sun exposure when this phenotype (eye colour) occurs simultaneously with Pro/Pro genotype.  相似文献   

17.
A very common polymorphism of p53, that of codon 72, codes either for a proline (P72) or an arginine (R72). The two alleles differ in their biological properties: P72 is a stronger inducer of p21, while R72 induces 5-10 times more apoptosis. It is not known, however, whether this polymorphism influences genome stability. The influence of p53 codon 72 polymorphism on cancer risk has been studied for different types of cancer with mixed and inconsistent results. With respect to sporadic non-melanoma skin cancer (NMSC), there are few studies, with small sample sizes, and none in a Latinoamerican population. These studies have found no association between p53 genotype at codon 72 and NMSC. We analyzed whether p53 codon 72 genotype influences genomic stability and the sensitivity of cells to UVB. We also carried out a case-control study of NMSC in a Mexican population which included 204 BCC cases, 42 SCC cases, and 238 controls. There was no association between p53 genotype and basal levels of DNA damage, oxidative DNA damage sensitivity, or DNA repair capacity. R72 dominantly increased the in vitro sensitivity of cells to UVB-induced apoptosis. There was no significant association either between p53 genotype and basal cell carcinoma (BCC), squamous cell carcinoma (SCC) or both combined.  相似文献   

18.
Polymorphisms in DNA repair genes may be associated with differences in DNA repair capacity, thereby influencing the individual susceptibility to smoking-related cancer. We investigated the association of 10 base-excision and nucleotide-excision repair gene polymorphisms (XRCC1 -77 T/C, Arg194Trp, Arg280His and Arg399Gln; APE1 Asp148Glu; OGG1 Ser326Cys; XPA -4 G/A; XPC PAT; XPD Asp312Asn and Lys751Gln) with lung cancer risk in Caucasians. Genotypes were determined by PCR-RFLP and PCR-single base extension assays in 110 lung cancer patients and 110 age- and sex-matched controls, and the results were analyzed using logistic regression adjusted for relevant covariates. A significant association between the APE1 Asp148Glu polymorphism and lung cancer risk was found, with adjusted odds ratios (OR) of 3.38 (p=0.001) for the Asp/Glu genotype and 2.39 (p=0.038) for the Glu/Glu genotype. Gene-smoking interaction analyses revealed a statistically significant interaction between cumulative cigarette smoking and the XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms: these polymorphisms were significantly associated with lung cancer in nonsmokers and light smokers (<25 PY; OR=4.92, p=0.021 for XRCC1 399 Gln/Gln; OR=3.62, p=0.049 for XPD 751 Gln/Gln), but not in heavy smokers (> or =25 PY; OR=0.68, p=0.566 for XRCC1 399 Gln/Gln; OR=0.46, p=0.295 for XPD 751 Gln/Gln). Both the XRCC1 Arg194Trp and Arg280His as well as the OGG1 Ser326Cys heterozygous genotypes were associated with a significantly reduced risk for lung cancer (OR=0.32, p=0.024; OR=0.25, p=0.028; OR=0.51, p=0.033, respectively). No associations with lung cancer risk were found for the XRCC1 -77 T/C, the XPA -4 G/A and the XPC PAT polymorphisms. In conclusion, the APE1 Asp148Glu polymorphism is highly predictive for lung cancer, and cumulative cigarette smoking modifies the associations between the XRCC1 Arg399Gln and the XPD Lys751Gln polymorphisms and lung cancer risk.  相似文献   

19.
The aim of the present study was to investigate the role of some polymorphisms in GSTs (GSTM1, GSTT1 and GSTP1) which are very important protective mechanisms against oxidative stress and in OGG1 gene which is important in DNA repair, against the risk of type 2 diabetes mellitus (T2DM). 127 T2DM and 127 control subjects were included in the study. DNA was extracted from whole blood. Analyses of GSTM1 and GSTT1 gene polymorphisms were performed by allele specific PCR and those of GSTP1 Ile105Val and OGG1 Ser326Cys by PCR-RFLP. Our data showed that GSTM1 null genotype frequency had a 2-6 times statistically significant increase in a patient group (OR=3.841, 95% CI=2.280-6.469, p<0.001) but no significance with GSTT1 null/positive and GSTP1 Ile105Val genotypes was observed. When T2DM patients with OGG1 Ser326Cys polymorphism were compared with patients with a wild genotype, a 2-3 times statistically significant increase has been observed (OR 1.858, 95% CI=1.099-3.141, p=0.021). The combined effect of GSTM1 null and OGG1 variant genotype frequencies has shown to be statistically significant. Similarly, the risk of T2DM was statistically increased with GSTM1 null (OR=3.841, 95% CI=2.28-6.469), GSTT1 null+GSTP1 (H+M) (OR=4.118, 95% CI=1.327-12.778) and GSTM1 null+OGG1 (H+M) (OR=3.322, 95% CI=1.898-5.816) and GSTT1 null+OGG1 (H+M) (OR=2.179, 95% CI=1.083-4.386) as compared to the control group. According to our study results, it has been observed that the combined evaluation of GSTM1-GSTT1-GSTP1 and OGG1 Ser326Cys gene polymorphisms can be used as candidate genes in the etiology of T2DM, especially in the development of T2DM.  相似文献   

20.
The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8‐oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty‐two healthy Caucasian men (40–74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild‐type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG‐sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG‐sensitive sites) and repair activity (OGG1) between genotype groups (in the pre‐training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG‐sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号