首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alveolar macrophages (AM) are the first line of defense against infection in the lungs. We previously showed that the production of superoxide and hydrogen peroxide, i.e., the respiratory burst, is stimulated by adenine nucleotides (ADP > ATP) in rat AM through signaling pathways involving calcium and protein kinase C. Here, we further show that ADP induces a rapid increase in the tyrosine phosphorylation of several proteins that was reduced by the tyrosine kinase inhibitor genistein, which also inhibited the respiratory burst. Interestingly, ADP did not trigger the activation of the mitogen-activated protein kinases ERK1 and ERK2, or that of protein kinase B/AKT, a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway. This is in contrast to another stimulus of the respiratory burst, zymosan-activated serum (ZAS), which activates both the ERK and PI3K pathways. Thus, this study demonstrates that the receptor for ADP in rat AM is not coupled to the ERK and AKT pathways and, that neither the ERK pathway nor AKT is essential to induce the activation of the NAPDH oxidase by ADP in rat AM while tyrosine kinases appeared to be required. The rate and amount of hydrogen peroxide released by the ADP-stimulated respiratory burst was similar to that produced by ZAS stimulation. The absence of ERK activation after ADP stimulation therefore suggests that hydrogen peroxide is not sufficient to activate the ERK pathway in rat AM. Nonetheless, as hydrogen peroxide was necessary for ERK activation by ZAS, this indicates that, in contrast to ADP, ZAS stimulates a pathway that is targeted by hydrogen peroxide and leads to ERK activation.  相似文献   

2.
《The Journal of cell biology》1994,125(6):1407-1416
Cooperation among plasma membrane receptors in activating signal transduction cascades is not well understood. For almost 20 years, it has been clear that when a particulate foreign body is opsonized with complement as well as IgG, the efficiency of IgG effector functions is markedly enhanced. However, the molecular mechanisms involved in cooperation between IgG Fc receptors and complement receptors have not been elucidated. In this work, we show that when human neutrophils (PMN) are plated on a surface coated with both anti-CR3 and anti-Fc gamma RIII antibodies, the respiratory burst which occurs is equivalent to that stimulated by anti-Fc gamma RII. The CR3 ligand iC3b is as effective as anti-CR3 for cooperating with anti-Fc gamma RIII in generation of a respiratory burst. The synergy between CR3 and Fc gamma RIII for activating the NADPH oxidase is abolished by Fab of anti-Fc gamma RII. Nonetheless, the observed synergy is not an artifact of unintended Fc gamma RII ligation, since (a) only this combination of antibodies works to generate H2O2; (b) coating plates with either of the antibodies alone cannot activate the respiratory burst at any dose; (c) LAD (CR3 deficient) cells, which are perfectly competent to mount a respiratory burst when Fc gamma RII is engaged, are incapable of activating the respiratory burst when adherent to wells coated with anti-Fc gamma RIII and anti-CR3; (d) direct engagement of Fc gamma RII activates the respiratory burst by a pathway pharmacologically distinguishable from the synergistic respiratory burst. Fc gamma RIII/CR3 synergy is abolished by cytochalasin B and herbimicin, suggesting that both the actin cytoskeleton and tyrosine phosphorylation are necessary for activation of the synergistic respiratory burst. Further analysis shows that CR3 and Fc gamma RIII have distinct roles in activation of this Fc gamma RII-dependent assembly of the NADPH oxidase. Ligation of CR3 is sufficient to lead to Fc gamma RII association with the actin cytoskeleton on the adherent PMN surface. Coligation of Fc gamma RIII is required for tyrosine phosphorylation of Fc gamma RII. These data are consistent with a model in which phosphorylation of Fc gamma RII or a closely associated substrate initiates activation of a signal transduction pathway leading to oxidase assembly. These are the first data to demonstrate a molecular mechanism for synergy between IgG Fc and complement receptors in activation of phagocyte effector functions.  相似文献   

3.
The priming effect of insulin on the fMLP-induced respiratory burst of mouse neutrophils as well as the involvement of tyrosine protein kinases and phosphatases in this process have been studied. Peritoneal evoked neutrophils of NMRI strain mice were incubated with 0.01-100 nM insulin for 1-60 min at 22, 30, or 37°C and activated by 0.1-50 M N-formyl-methionyl-leucyl-phenylalanine (fMLP). The production of reactive oxygen species (ROS) by neutrophils was monitored by luminol-dependent chemiluminescence. We found that 125I-labeled insulin binding by mouse neutrophils occurred with saturation and high affinity. Insulin itself did not change the basal level of the ROS production but could modulate fMLP-induced respiratory burst. The effect of insulin depended on temperature and duration of pretreatment of the neutrophils with insulin and the concentration combination of the insulin and fMLP. The tyrosine kinase inhibitor tyrphostin 51 decreased the fMLP-induced respiratory burst significantly. Insulin did not change the fMLP response of neutrophils pretreated with tyrphostin. However, the effect of tyrphostin on the response to 50 M fMLP was considerably decreased in neutrophils treated with insulin. There was no such effect during activation by 5 M fMLP, for which the priming effect of insulin was not observed. Insulin did not increase the fMLP-induced respiratory burst in neutrophils treated with the protein phosphatase inhibitors orthovanadate and pyrophosphate. If the inhibitors were added after insulin, the combined effect was nearly additive. It is possible that priming by insulin of the fMLP-induced respiratory burst is triggered by tyrosine phosphorylation, realized with its participation, and involves the signaling pathways initiated by tyrosine phosphorylation but subsequently is not dependent on the latter. The role of protein phosphatases in priming by insulin is of little importance. The data indirectly confirm the idea that priming of the neutrophil respiratory burst is a result of crosstalk of signaling pathways of the insulin and fMLP receptors with the participation of tyrosine phosphorylation.  相似文献   

4.
Reactive oxygen species (ROS) play a key signal transduction role in cells. They are involved in the regulation of growth, development, responses to environmental stimuli and cell death. The level of ROS in cells is determined by interplay between ROS producing pathways and ROS scavenging mechanisms, part of the ROS gene network of plants. Recent studies identified respiratory burst oxidase homologues (RBOHs) as key signaling nodes in the ROS gene network of plants integrating a multitude of signal transduction pathways with ROS signaling. The ability of RBOHs to integrate calcium signaling and protein phosphorylation with ROS production, coupled with genetic studies demonstrating their involvement in many different biological processes in cells, places RBOHs at the center of the ROS network of cells and demonstrate their important function in plants.  相似文献   

5.
The activation of the neutrophil respiratory burst is a two-step process involving an initial 'priming' phase followed by a 'triggering' event. The biochemical mechanisms which underlie these events are yet to be fully elucidated, but the evidence suggests a crucial role for stimulus-induced tyrosine phosphorylation. The enhanced tyrosine phosphorylation observed upon triggering primed cells may reflect an increase in tyrosine kinase activity or a reduction in the levels of the opposing phosphotyrosine phosphatases (PTPases). We have investigated the latter by examining the possibility that lipopolysaccharide (LPS)-induced priming of the neutrophil respiratory burst involves the suppression of cellular PTPase activity. Purified human neutrophils were incubated for 60 min with and without LPS. Priming of the respiratory burst was confirmed by fMet-Leu-Phe-induced cytochrome c reduction. The level of PTPase activity was assessed by dephosphorylation of [32P]RR-src peptide as substrate. Pretreatment of human neutrophils with 200 ng/ml LPS induced a 2.9 +/- 0.3 (mean +/- SEM, n = 3, P = 0.022) fold increase in the fMet-Leu-Phe-triggered respiratory burst. In the same cells, LPS did not induce a significant change in the total cellular PTPase activity (1.02 +/- 0.02-fold, mean +/- SEM, n = 3, P = 0.63). Similarly, stimulation of neutrophils with fMet-Leu-Phe or phorbol myristate acetate did not significantly affect the cellular PTPase activity (P = 0.94 and 0.68, respectively). Our results suggest that suppression of PTPase activity is not the mechanism underlying the priming and/or triggering of the neutrophil respiratory burst.  相似文献   

6.
Human neutrophils express two different types of phagocytic receptors, complement receptors (CR) and Fc receptors. In order to characterize the different signaling properties of each receptor we have used non-adherent human neutrophils and investigated CR3, FcgammaRIIA and FcgammaRIIIB for their signaling capacity. Selective activation of each receptor was achieved by coupling specific antibodies to heat-killed Staphylococcus aureus particles, Pansorbins, through their Fc moiety. Despite the fact that these particles are not phagocytosed, we show that addition of Pansorbins with anti-CD18 antibodies recognizing CR3 induced prominent signals leading to a respiratory burst. Stimulation with anti-FcgammaRIIIB Pansorbins induced about half of the response induced by anti-CR3 Pansorbins, whereas anti-FcgammaRIIA Pansorbins induced an even weaker signal. However, FcgammaRIIA induced strong phosphorylation of p72(syk) whereas FcgammaRIIIB induced only a very weak p72(syk) phosphorylation. During CR3 stimulation no tyrosine phosphorylation of p72(syk) was seen. Both phospholipase D and NADPH oxidase activities were dependent on intracellular calcium. This is in contrast to tyrosine phosphorylation of p72(syk) that occurred even in calcium-depleted cells, indicating that oxygen metabolism does not affect p72(syk) phosphorylation. Inhibitors of tyrosine phosphorylation blocked the respiratory burst induced by both FcgammaRIIA and FcgammaRIIIB as well as CR3. This shows that tyrosine phosphorylation of p72(syk) is an early signal in the cascade induced by FcgammaRIIA but not by CR3.  相似文献   

7.
Fc-receptor stimulation in myeloid cells results in increased oxygen consumption, termed the respiratory burst, which is coupled to a rapid and transient increase in tyrosine phosphorylation of cellular proteins. In a previous paper in this journal we showed that the protein tyrosine phosphatase (PTPase) inhibitors sodium orthovanadate and phenylarsine oxide (PAO) block the FcγRI-induced respiratory burst in interferon-γ-differentiated U937 cells (U937IF) while augmenting the FcγRI-induced tyrosine phosphorylation of cellular proteins. Herein we examine the effects of PTPase inhibitors on specific molecules involved in FcγRI signaling. We show that orthovanadate and PAO augmented the FcγRI-induced tyrosine phosphorylation of the adaptor protein CBL. CBL interactions with other phosphoproteins, among them SHC and CRKL, were also augmented in response to pretreatment with the PTPase inhibitors. SHC was tyrosine phosphorylated in response to FcγRI stimulation of U937IF cells and bound to the SH2 domain of GRB2 in a stimulation-dependent manner. In fusion protein pull-down experiments the interaction of SHC with the SH2 domain of GRB2 was increased in PTPase inhibitor pretreated U937IF cells in response to FcγRI stimulation. Our data support the hypothesis that a tyrosine dephosphorylation event is required for effective transmission of the FcγRI signal to result in activation of the myeloid respiratory burst response.  相似文献   

8.
Activation of the T‐cell receptor (TCR) and that of the B‐cell receptor (BCR) elicits tyrosine‐phosphorylation of proteins that belongs to similar functional categories, but result in distinct cellular responses. Large‐scale analyses providing an overview of the signaling pathways downstream of TCR or BCR have not been described, so it has been unclear what components of these pathways are shared and which are specific. We have now performed a systematic analysis and provide a comprehensive list of tyrosine‐phosphorylated proteins (PY proteome) with quantitative data on their abundance in T cell, B cell, and nonlymphoid cell lines. Our results led to the identification of novel tyrosine‐phosphorylated proteins and signaling pathways not previously implicated in immunoreceptor signal transduction, such as clathrin, zonula occludens 2, eukaryotic translation initiation factor 3, and RhoH, suggesting that TCR or BCR signaling may be linked to downstream processes such as endocytosis, cell adhesion, and translation. Thus comparative and quantitative studies of tyrosine‐phosphorylation have the potential to expand knowledge of signaling networks and to promote understanding of signal transduction at the system level.  相似文献   

9.
Activation of the NADPH oxidase was examined in electrically permeabilized human neutrophils exposed to non-hydrolysable guanine nucleotides. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]) induced a marked increase in the rate of O2 consumption, which was partially resistant to staurosporine, an inhibitor of protein kinase C, under conditions where the response to diacylglycerol was virtually abolished. The respiratory burst elicited by GTP[S] was dependent on the presence of ATP and Mg2+, suggesting involvement of phosphorylation reactions. Accordingly, phosphoprotein formation was greatly stimulated by the guanine nucleotide. The polypeptide phosphorylation pattern induced by GTP[S] was similar to, but not identical with, that observed with diacylglycerol, indicating the activation of kinases other than protein kinase C by the guanine nucleotide. The possible involvement of tyrosine kinases was assessed by immunoblotting using anti-phosphotyrosine antibodies. Treatment of electroporated cells with GTP[S] stimulated the accumulation of tyrosine-phosphorylated proteins. This effect was not induced by diacylglycerol, indicating that tyrosine phosphorylation is not secondary to stimulation of protein kinase C. The results indicate that, in neutrophils, activated G-proteins can stimulate tyrosine kinase and/or inhibit tyrosine phosphatase activity. Changes in the amounts of tyrosine-phosphorylated proteins may signal activation of the respiratory burst.  相似文献   

10.
The novel calcium indicator fura red and the oxidative burst indicator dihydrorhodamine (both excited at 488 nm) were used in combination with multiparameter flow cytometry to allow simultaneous kinetic measurements of calcium fluxes and oxidative bursts in monocytes and granulocytes. Using this method it was possible to obtain direct evidence for the following cell type- and stimulus-specific differences in signal transduction pathways: 1) n-formyl-methionyl-leucyl-phenylalanine (FMLP)/cytochalasin B-induced oxidative burst is several-fold higher in granulocytes than in monocytes although the calcium fluxes have similar amplitudes in the two cell types; 2) stimulus-induced calcium fluxes in granulocytes are mainly due to release from intracellular stores, whereas monocytes mobilize calcium mainly by influx from the medium; 3) the FMLP/cytochalasin B-induced calcium flux in monocytes is less sensitive to the G-protein inhibitor pertussis toxin than the flux in granulocytes; 4) in contrast to FMLP/cytochalasin B, the protein kinase C activator phorbol myristate acetate (PMA) induces an oxidative burst that is not preceded by a cytoplasmic calcium flux; 5) the PMA-induced oxidative burst can be triggered in monocytes and granulocytes that are depleted of intracellular calcium ions, whereas that induced by FMLP/cytochalasin B can not; 6) the G-protein inhibitor pertussis toxin blocks an early event in the signal transduction pathway of FMLP/cytochalasin B, as shown by inhibition of both calcium fluxes and oxidative burst; and 7) 100 nM of the protein kinase inhibitor staurosporine blocks the FMLP/cytochalasin B-induced respiratory burst by interfering with a step downstream to cytoplasmic calcium fluxes, whereas only 10-20 nM is necessary to block PMA-induced oxidative burst.  相似文献   

11.
Qu CK 《Cell research》2000,10(4):279-288
Cellular biological avtivities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases,which remove phosphate groups from phosphorylated signaling molecules,play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2 a cytoplasmic SH2 domain containing protein tyrosine phosphatase,is involved in the signaling pathways of a variety of growth factors and cytokines.Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus,and is a critical intracellular regulator in mediating cell proliferation and differentiation.  相似文献   

12.
We characterized pharmacologically the hypersensitive cell death of tobacco BY-2 cells that followed treatments with Escherichia coli preparations of INF1, the major secreted elicitin of the late blight pathogen Phytophthora infestans. INF1 elicitin treatments resulted in fragmentation and 180 bp laddering of tobacco DNA as early as 3 h post-treatment. INF1 elicitin also induced rapid accumulation of H2O2 typical of oxidative burst, and the expression of defense genes such as phenylalanine ammonia-lyase (PAL) gene at 1 h and 3 h after elicitin treatment, respectively. To investigate the involvement of the oxidative burst and/or the expression of defense genes in the signal transduction pathways leading to hypersensitive cell death, we analyzed the effect of several chemical inhibitors of signal transduction pathways on the various responses. The results indicated that (a) the cell death required serine proteases, Ca2+ and protein kinases, (b) the oxidative burst was involved in Ca2+ and protein kinase mediated pathways, but elicitin-induced AOS was neither necessary nor sufficient for cell death and PAL gene expression, and (c) the signaling pathway of PAL gene expression required protein kinases. These results suggest that the three signal transduction pathways leading to cell death, oxidative burst and expression of defense genes branch in the early stages that follow elicitin recognition by tobacco cells.  相似文献   

13.
The interleukin-6 cytokine family plays roles in a wide variety of tissues and organs, including the immune hematopoietic and nervous systems. Gp130 is a signal-transducing subunit shared by the receptors for the IL-6 family of cytokines. The binding of a ligand to its receptor induces the dimerization of gp 130, leading to the activation of JAK tyrosine kinase and tyrosine phosphorylation of gpl30. These events lead to the activation of multiple signal-transduction pathways, such as the STAT, Ras-MAPK and PI-3 kinase pathways whose activation is controlled by distinct regions of gp130. We propose a model showing that the outcome of the signal transduction depends on the balance or interplay among the contradictory signal transduction pathways that are simultaneously generated through a cytokine receptor in a given target cell.  相似文献   

14.
15.
We used the U937 cell line to examine the modulation of adaptor protein interactions (Shc, Grb2, and Cbl) after high affinity IgG receptor (FcgammaRI) cross-linking, leading to the formation of the Grb2-Sos complex, the activation of Ras, and the regulation of the respiratory burst. Cross-linking of FcgammaRI induced the conversion of GDP-Ras to GTP-Ras reaching a maximum 5 min after stimulation. Concomitant with Ras activation, Sos underwent an electrophoretic mobility shift and the Sos-Grb2 association was increased (6-fold). The Grb2-Sos complex was present only in the membrane fraction and was augmented after FcgammaRI stimulation. Tyrosine-phosphorylated Shc, mainly the p52 isoform, was observed to transiently onload to the membrane Grb2-Sos complex on FcgammaRI stimulation. Cross-linking of FcgammaRI induces the tyrosine phosphorylation of Cbl, which forms a complex with Grb2 and Shc via the Cbl C terminus. Kinetic experiments confirm that Cbl-Grb2 is relatively stable, whereas Grb2-Sos, Grb2-Shc, and Cbl-Shc interactions are highly inducible. The Src family tyrosine kinase inhibitor, PP1, was shown to completely inhibit Shc tyrosine phosphorylation, the Shc-Grb2 interaction, and the FcgammaR-induced respiratory burst. Our results provide the first evidence that the upstream activation of Src kinases is required for the modulation of the Shc-Grb2 interaction and the myeloid NADPH oxidase response.  相似文献   

16.
Liquid ventilation with perflubron is associated with reduced neutrophil recruitment into the lung during acute injury. Perflubron also reduces chemotactic responses, the respiratory burst, and cytokine production in neutrophils and in alveolar macrophages in vitro. In the current studies, the effect of perflubron on neutrophil chemotaxis to formyl-Met-Leu-Phe (fMLP) and phagocytosis of opsonized sheep erythrocytes (EA) correlated with decreased phosphorylation of Syk, an important intracellular second messenger in pathways regulating neutrophil functional responses. Brief (5 min) exposure of neutrophils to perflubron resulted in a dose-dependent reduction in chemotaxis to fMLP and reduced phagocytosis of EA but no apparent morphological changes as seen by electron microscopy. Concurrently, there was a reduction in both total cytosolic tyrosine phosphorylation and Syk phosphorylation. Binding studies indicated that this effect was neither a result of impaired ligand-receptor affinity nor a change in the number of fMLP receptors available on the neutrophil surface. These results suggest that perflubron nonspecifically affects cellular activation as measured by tyrosine phosphorylation perhaps by interfering with transmembrane signal transduction.  相似文献   

17.
Role of plant respiratory burst oxidase homologs in stress responses   总被引:1,自引:0,他引:1  
Plant respiratory burst oxidase homologs (Rbohs), which are also named nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), are the homologs of mammalian phagocyte gp91phox. As a unique among other reactive oxygen species (ROS) production mechanisms in plants, NADPH oxidases can integrate different signal transduction pathways, such as calcium, protein phosphorylation catalysed by protein kinases, nitric oxide, and lipid messengers. Coupling with genetic studies, the ability of plant NADPH oxidases to integrate different signal transduction pathways with ROS production demonstrates their involvement in many important biological processes in cells, such as morphogenesis and development, and stress responses. Here, we focus on several current studies concerning the role of plant NADPH oxidases in stress responses.  相似文献   

18.
Reactive oxygen species released during the respiratory burst are known to participate in cell signaling. Here we demonstrate that hydrogen peroxide produced by the respiratory burst activates AP-1 binding. Stimulation of the macrophage cell line NR8383 with respiratory burst agonists ADP and C5a increased AP-1 binding activity. Importantly, this increase in binding was blocked by catalase, confirming mediation by endogenous H2O2. Moreover, exogenously added H2O2 mimicked the agonists, and also activated AP-1. Antibodies revealed that the activated AP-1 complex is composed predominantly of c-Fos/c-Jun heterodimers. Treatment of the cells with ADP, C5a and H2O2 (100 μM) all increased the phosphorylation of c-Jun. c-Fos protein was increased in cells treated with C5a or high dose (200 μM) H2O2, but not in cells treated with ADP. The MEK inhibitor, PD98059, partially blocked the C5a-mediated increase in AP-1 binding. A novel membrane-permeable peptide inhibitor of JNK, JNKi, also inhibited AP-1 activation. Together these data suggest that C5a-mediated AP-1 activation requires both the activation of the ERK and JNK pathways, whereas activation of the JNK pathway is sufficient to increase AP-1 binding with ADP. Thus, AP-1 activation joins the list of pathways for which the respiratory burst signals downstream events in the macrophage.  相似文献   

19.
Formylated peptides specifically activate many of the neutrophil functions; their action is mediated via formyl peptide receptors (FPRs). FPRs belong to the family of receptors having seven transmembrane-spanning domains and coupled with G-proteins (GPCR). About a dozen of highly homologous genes of FPRs were found to be localized in mouse chromosome 17. By binding with labeled N-formyl-Met-Leu-Phe (fMLF), FPRs are classified as receptors with high (FPR1) and low (FPR2 and FPR3/FPRL1) affinity to formyl peptide. Binding of formyl peptide with FPRs triggers the complex signaling events, the most studied are: activation of phospholipase C (PLC) with subsequent calcium signaling; launching of mitogen activated protein kinases (MAPKs) cascade pathway, and activation of phosphoinositol-3-kinase (PI3K) cascades. As we have shown previously, the priming of the respiratory burst of mice neutrophils occurs under the cell activation by fMLF in high doses only, i.e., it is necessary to activate low affinity FPRs. Besides, the usage of the specific MEK and p38MAPK inhibitors induced significant suppression of the response to 1 μM fMLM, while the response to 50 μM fMLF increased in the presence of the inhibitors. We suggest that there is a signal divergence upon activation of high and low affinity fMLF receptors, and small G protein dependent signaling pathways could be alternative to activate NADPH oxidase. Here we demonstrate that Ras-proteins participate in the respiratory burst activation, especially in activation via the high affinity fMLF receptors. Activation of the Rho- and Rac-proteins induced the down-regulation of the respiratory burst under the stimulation of high affinity FPRs. The inhibition of the Rho-proteins almost completely suppressed the respiratory burst activated via the high and low affinity receptors, probably due to inability to assemble of the cytoskeleton proteins and NADPH oxidase components.  相似文献   

20.
The anti-neutrophil mAb PMN 7C3 and IIC4 inhibited the respiratory burst of neutrophils as measured by the generation of superoxide anion or hydrogen peroxide in response to PMA, serum-treated zymosan, and FMLP. To examine the effect of these mAb on neutrophil transmembrane potential, a fluorescent probe was used in a continuous assay. Compared with control cells, antibody-treated neutrophils were partially depolarized at rest and had a blunted response when stimulated. The F(ab)2 fragment of PMN 7C3 had similar effects on both the respiratory burst and transmembrane potential, whereas the Fab fragment did not. The unrelated antineutrophil mAb 31D8 had no effect on either the respiratory burst or on transmembrane potential. Neutrophils suspended in high potassium buffers also exhibited partial depolarization of the resting cell membrane and a blunted depolarization response to stimuli and produced less superoxide anion and hydrogen peroxide in response to stimuli than did control cells in physiologic buffer. Exposure of neutrophils to 2-deoxy-D-glucose resulted in dose- and time-dependent depression of the respiratory burst. 2-Deoxy-D-glucose also caused depolarization of the resting membrane and impaired subsequent stimulus-induced depolarization. Similar effects were seen with addition of iodoacetamide or depletion of glucose. The parallel effects of anti-neutrophil mAb, depolarizing buffers, and glycolytic inhibitors on both neutrophil membrane depolarization and activation of the respiratory burst indicate a close association between these two events. The evidence suggests that the inhibitory effects of these antibodies are mediated through partial membrane depolarization which interferes with signal transduction on subsequent stimulation of the cells. The impairment in oxidative responses to phorbol esters as well as to receptor-dependent activating agents points to interruption at a distal step, e.g., subsequent to Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号