首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Superoxide generation in the NADPH oxidase reaction of NADPH-cytochrome P-450 reductase, demonstrated using the ESR spin trap, 5,5-dimethyl-1-pyrroline-1-oxide, increased on the addition of lactoferrin. The NADPH-lactoferrin reductase activity was assessed in terms of NADPH oxidation and oxygen consumption. From Lineweaver-Burk plots, the Km and Vmax for lactoferrin were estimated to be 13 microM and 0.5 S-1, respectively. The liberation of iron from lactoferrin was proven with the use of bathophenanthroline and by the demonstration of bleomycin-dependent DNA degradation; lactoferrin was reduced by the enzyme in the presence of NADPH. During the reaction, the ESR spectrum of the spin trap adduct changed from one characteristic of DMPO-OOH to that of DMPO-OH. The conversion was ascribed to the reaction of hydrogen peroxide with reduced lactoferrin.  相似文献   

5.
The reactions of NADPH- or dithionite-dependent reduction of cytochrome P-450 were studied using a stopped flow technique. It was found that the kinetic curves for both reactions may be fitted by a sum of the two exponents. The arrhenius plots for the fast phase rate constants are linear for both reactions. On the contrary, the breaks on the corresponding plots for the slow phase rate constants are observed at 22 and 33 degrees C for cytochrome P-450 reduction by dithionite and at 31 degrees C for NADPH-dependent reduction of cytochrome P-450. The coincidence of the values of the rate constants and activation energy (56 +/- 5 kJ/mol) for the fast phase of NADPH-dependent reduction of cytochrome P-450 with values of catalytic constants and activation energy for demethylation of tertiary amines suggests that the first electron transfer process from NADPH-cytochrome P-450 reductase to cytochrome P-450 may be the rate-limiting step. A diverse character of the kinetic parameters for the two cytochrome P-450 reduction reactions is indicative of different nature of biphasity of these processes.  相似文献   

6.
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes.  相似文献   

7.
Rat testicular NADPH-cytochrome P-450 reductase was inactivated by treatment with 2,4,6-trinitrobenzene sulfonate (TNBS) or with 2',3'-dialdehyde derivatives of 5'-ATP and NADP+. The inactivation rates were dependent on reaction time and followed pseudo-first order kinetics. The rate of inactivation of cytochrome c reducing activity by TNBS was faster than that of reducing activities for K3Fe(CN)6 and for dichlorophenol indophenol (DCPIP). Cytochrome c and DCPIP prevented NADPH-cytochrome P-450 reductase from inactivation by TNBS, but NADP(H) protected to a lesser extent. Stoichiometry indicated that two residues of amino acid modified with TNBS were essential for the enzyme activity. The 2',3'-dialdehyde derivatives of 5'-ATP and NADP+ were specific ligands for the modification of lysine residues, whereas TNBS would possibly modify residues of lysine and/or cysteine. By differential and sequential modification by 5,5'-dithio-bis(2-nitrobenzoic acid), TNBS and dithiothreitol, the residues of lysine and cysteine were identified in the active site of NADPH-cytochrome P-450 reductase. These results suggest that lysyl and cysteinyl residues are located at or near the active region of NADPH-cytochrome P-450 reductase from the rat testicular microsomal fraction.  相似文献   

8.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37°C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

9.
NADPH-cytochrome P-450 reductase releases FAD upon dilution into slightly acidic potassium bromide. Chromatography on high performance hydroxylapatite resolved the FAD-dependent reductase from holoreductase. The FAD dependence was matched by a low FAD content, with the ratio of FAD to FMN as low as 0.015. The aporeductase had negligible activity toward cytochrome c, ferricyanide, menadione, dichlorophenolindophenol, nitro blue tetrazolium, and an analogue of NADP, acetylpyridine adenine dinucleotide phosphate. A 4-min incubation in FAD reconstituted from one-half to all of the enzyme activity, as compared to the untreated reductase, depending upon the substrate. After a 2-h reconstitution, the reductase eluted from hydroxylapatite at the same location in the elution profile as did the untreated holoreductase. The reconstituted reductase had little flavin dependence, was nearly equimolar in FMN and FAD, and had close to the specific activity, per mol of flavin, of untreated reductase. The dependence upon FAD implies that FMN is not a competent electron acceptor from NADPH. Thus, the FAD site must be the only point of electron uptake from NADPH.  相似文献   

10.
Under anaerobic conditions and with proper electron donors, NADPH-cytochrome P-450 reductase (EC 1.6.2.4) and xanthine oxidase (EC 1.2.3.2) similarly reductively metabolized mitomycin C. Reversed phase high performance liquid chromatography was used to separate, detect, and isolate several metabolites. Three metabolites were identified by mass spectrometry and thin layer chromatography as 1,2-cis- and trans-2,7-diamino-1-hydroxymitosene and 2,7-diaminomitosene. Three metabolites were phosphate-dependent, and two of them were identified to be 1,2-cis- and trans-2,7-diaminomitosene 1-phosphate. The amounts of the five identified metabolites generated during the reduction of mitomycin C varied with pH and nucleophile concentration. At pH 6.5, 2,7-diaminomitosene was essentially the only metabolite formed, whereas from pH 6.8 to 8.0, trans- and cis-2,7-diamino-1-hydroxymitosene increased in quantity as 2,7-diaminomitosene decreased. The disappearance of mitomycin C and the production of metabolites were enzyme and mitomycin C concentration-dependent. Substrate saturation was not reached for either enzyme up to 5 mM mitomycin C. Electron paramagnetic resonance studies demonstrated the formation of mitomycin C radical anion as an intermediate during enzymatic activation. Our results indicate that either enzyme catalyzed the initial activation of mitomycin C to a radical anion intermediate. Subsequent spontaneous reactions, including the elimination of methanol and the opening of the aziridine ring, generate one active center at C-1 which facilitates nucleophilic attack. Simultaneous generation of two reactive centers was not observed. All five primary metabolites were metabolized further by either flavoenzyme. The secondary metabolites exhibited similar changes in their absorbance spectra and were unlike the primary metabolites, suggesting that a second alkylating center other than C-1 was generated during secondary activation. We propose that secondary activation of monofunctionally bound mitomycin C is probably a main route for the bifunctional binding of mitomycin C to macromolecules and that the cytotoxic actions of mitomycin C result from multiple metabolic activations and reactions.  相似文献   

11.
A fluorescent probe, N-(1-anilinonaphth-4-yl)-maleimide (ANM), was specifically labeled to SH group(s) in the hydrophilic moiety of NADPH-cytochrome P-450 reductase at a ratio of 1 +/- 0.1 ANM/mol of protein. The ANM-labeled reductase and P-450 were reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles in which all of the enzymes were functionally active. The reconstitution of the mixed-function oxidase system was found to be strongly dependent on both the lipid to protein molar ratio and phospholipid composition. The interactions of ANM-labeled reductase with P-450 in proteoliposomes were investigated by perturbation of the fluorescence of ANM. Upon incorporation of P-450 into the phospholipids vesicles (ANM-reductase/P-450/lipids identical to 1:1.4:800), a significant decrease of total fluorescence intensity and slight increase of emission anisotropy of ANM were observed. In the average fluorescence lifetime of ANM bound with reductase, an appreciable change was shown between the absence and presence of P-450 in the vesicles. These data provide clear evidence that significant molecular interactions occur between the two proteins in a membranous reconstituted system.  相似文献   

12.
The interaction of NADPH-cytochrome c reductase with oxygen, artificial acceptors and cytochrome P-450 is investigated. It is found that generation of oxygen anion-radicals (O2-), determined from the reaction of adrenaline oxidation into adrenochrome, proceeds independently on the reactions of interaction with artificial "anaerobic" acceptors-cytochrome c, dichlorophenolindophenol. Propylgallate competitively inhibits the reaction of adrenaline oxidation by isolated DADPH-cytochrome c reductase and non-competitively suppress the reaction of cytochrome c reduction. In contrast to the process of electron transfer on cytochrome c, there is a direct correlation between the rate of cytochrome P-450 reduction and the rate of adrenaline oxidation in liver microsomes. Hexobarbital increases V of the adrenaline oxidation reaction and does not affect the Km value, while metirapon, a metabolic inhibitor, decreases the Vmax and does not change Km. On the basis of the data obtained it is suggested that the reactions of NADPH-cytochrome c reductase interaction with oxygen and artificial "anaerobic" acceptors are connected with different redox-states of flavoprotein or with different flavine coenzymes, and that the electron transport on cytochrome P-450 and directly on oxygen takes place in interrelated redox-states of flavoprotein.  相似文献   

13.
A covalent complex between purified rat liver microsomal NADPH-cytochrome P-450 reductase and horse cytochrome c was formed through cross-linking studies with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at low ionic strength. The purified cross-linked derivative shows that this product is a 1:1 complex containing one molecule each of the flavoprotein and cytochrome. The covalent complex had almost completely blocked the electron transfer from NADPH to exogenous cytochrome c or the rabbit liver microsomal cytochrome P-450 induced by phenobarbital, indicating that the cross-linked cytochrome c covers the electron-accepting site of the reductase. These results suggest that the covalently cross-linked derivative is a valid model of the noncovalent electron transfer complex. Although the exact number and site of the cross-linked location were not determinable, in cytochrome c the amide bond originates from Lys-13 and in reductase it might be at any one of six different side chain carboxyl groups in the two neighboring cluster acidic residues, Asp-207, -208, and -209, and Glu-213, Glu-214, and Asp-215. It is therefore proposed that the six clustered carboxyl groups on reductase are in an exposed location near the area where one heme edge comes close to the molecular surface.  相似文献   

14.
Physiological heme degradation is mediated by the heme oxygenase system consisting of heme oxygenase and NADPH-cytochrome P-450 reductase. Biliverdin IX alpha is formed by elimination of one methene bridge carbon atom as CO. Purified NADPH-cytochrome P-450 reductase alone will also degrade heme but biliverdin is a minor product (15%). The enzymatic mechanisms of heme degradation in the presence and absence of heme oxygenase were compared by analyzing the recovery of 14CO from the degradation of [14C]heme. 14CO recovery from purified NADPH-cytochrome P-450 reductase-catalyzed degradation of [14C]methemalbumin was 15% of the predicted value for one molecule of CO liberated per mole of heme degraded. 14CO2 and [14C]formic acid were formed in amounts (18 and 98%, respectively), suggesting oxidative cleavage of more than one methene bridge per heme degraded, similar to heme degradation by hydrogen peroxide. The reaction was strongly inhibited by catalase, but superoxide dismutase had no effect. [14C]Heme degradation by the reconstituted heme oxygenase system yielded 33% 14CO. Near-stoichiometric recovery of 14CO was achieved after addition of catalase to eliminate side reactions. Near-quantitative recovery of 14CO was also achieved using spleen microsomal preparations. Heme degradation by purified NADPH-cytochrome P-450 reductase appeared to be mediated by hydrogen peroxide. The major products were not bile pigments, and only small amounts of CO were formed. The presence of heme oxygenase, and possibly an intact membrane structure, were essential for efficient heme degradation to bile pigments, possibly by protecting the heme from indiscriminate attack by active oxygen species.  相似文献   

15.
Human placental NADPH-cytochrome P-450 reductase (EC 1.6.2.4) was purified to electrophoretic homogeneity in two chromatographic steps with a high retention of bioactivity. After solubilization with 1% sodium cholate in a protective medium containing 20% glycerol, 10 microM 4-androstene-3,17-dione, 1 mM dithiothreitol, and 0.2 mM EDTA, a 35-60% ammonium sulfate precipitate was prepared. The crude protein mixture was then applied to a 2',5'-ADP-Sepharose 4B affinity column, followed by high-performance anion-exchange chromatography (Pharmacia Mono-Q column). Two forms of the reductase were isolated. One was eluted at higher salt concentration and had a relative mass (Mr) of 79 kdaltons (kDa) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance gel permeation chromatography. A smaller size reductase with a Mr of 70 kDa, eluting at lower salt concentration, was also formed by trypsinolysis of the 79-kDa reductase. It must therefore be regarded as a proteolytic artifact. The absolute spectra in the visible region of the two reductases were identical with maxima at 376 and 452 nm, typical of a flavoprotein. They also had the same specific activity of 24.7 +/- 0.7 mumol/min per milligram protein towards cytochrome c. However, only the 79-kDa reductase showed aromatase-reconstitution activity. The homogeneity of these reductases was further confirmed by the appearance of a single peak when subjected to gradient, reversed-phase high-performance liquid chromatography. According to its amino acid composition, the 79-kDa reductase is a highly acidic and hydrophobic protein, composed of 695 residues.  相似文献   

16.
17.
In the presence of NADPH and O2, NADPH-cytochrome P-450 reductase was found to activate Fe(III)-bleomycin A2 for DNA strand scission. Consistent with observations made previously when cccDNA was incubated in the presence of bleomycin and Fe(II) + O2 or Fe(III) + C6H5IO, degradation of DNA by NADPH-cytochrome P-450 reductase activated Fe(III)-bleomycin A2 produced both single- and double-strand nicks with concomitant formation of malondialdehyde (precursors). Cu(II)-bleomycin A2 also produced nicks in SV40 DNA following activation with NADPH-cytochrome P-450 reductase, but these were not accompanied by the formation of malondialdehyde (precursors). These findings confirm the activity of copper bleomycin in DNA strand scission and indicate that it degrades DNA in a fashion that differs mechanistically from that of iron bleomycin. The present findings also-establish the most facile pathways for enzymatic activation of Fe(III)-bleomycin and Cu(II)-bleomycin, provide data concerning the nature of the activated metallobleomycins, and extend the analogy between the chemistry of cytochrome P-450 and bleomycin.  相似文献   

18.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37 degrees C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

19.
Chemical modification of cytochrome P-450 reductase was used to determine the involvement of charged amino acids in the interaction between the reductase and two forms of cytochrome P-450. Acetylation of 11 lysine residues of the reductase with acetic anhydride yielded a 20-40% decrease in the apparent Km of the reductase for cytochrome P-450b or cytochrome P-450c using either 7-ethoxycoumarin or benzphetamine as substrates. A 20-45% decrease in the Vmax was observed except for cytochrome P-450b with 7-ethoxycoumarin as substrate, where there was a 27% increase. Modification of carboxyl groups on the reductase with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and methylamine, glycine methyl ester, or taurine as nucleophiles inhibited the interaction with the cytochromes P-450. We were able to modify 4.0, 7.9, and 5.9 carboxyl groups using methylamine, glycine methyl ester, or taurine, respectively. The apparent Km for cytochrome P-450c or cytochrome P-450b was increased 1.3- to 5.2-fold in a reconstituted monooxygenase assay with 7-ethoxycoumarin or benzphetamine as substrate. There were varied effects on the Vmax. There was no significant change in the conformation of the reductase upon chemical modification with either acetic anhydride or EDC. These results strongly suggest that electrostatic interactions as well as steric constraints play a role in the binding and electron transfer step(s) between the reductase and cytochrome P-450.  相似文献   

20.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号