首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The water dispersibility of a hydrophobic carotenoid has been greatly enhanced by using it as the acyl part in the synthesis of a highly unsaturated lysophospholipid. Dynamic light scattering has revealed the formation of stable aggregates with an average hydrodynamic radius of a few nanometers, and absorption spectra show that the aggregates can withstand the addition of ethanol or acetonitrile until the volume fraction of water falls below 70 and 62%, respectively. The properties of the carotenoid phospholipids have been characterized by determining surface tension, critical micelle concentration, surface concentration, molecular area, free energy of adsorption and micellation, adsorption-micellar energy relationship, and equilibrium constants.  相似文献   

2.
The aqueous solubility and/or dispersibility of synthetic carotenoid analogs can be improved by varying the chemical structure(s) of the esterified moieties. In the current study, a highly water-dispersible astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione) derivative was synthesized by esterification to the amino acid L-lysine, and subsequently converted to the tetrahydrochloride salt. Deep violet, evenly colored aqueous suspensions were obtained with addition of the novel derivative to USP purified water up to a maximum of 181.6 mg/mL. These aqueous suspensions were obtained without the addition of heat, detergents, co-solvents, or other additives. At higher concentrations (above 181.6 mg/mL), the dispersion became turbid and viscous. There was no saturation point up to 181.6 mg/mL. The direct superoxide scavenging ability of the tetrahydrochloride dilysine astaxanthin salt was also evaluated by electron paramagnetic resonance (EPR) spectroscopy in a well-characterized in vitro isolated human neutrophil assay. The novel derivative was an extremely potent (micromolar concentration) aqueous-phase scavenger, with near-complete suppression of the superoxide anion signal (as detected by spin-trap adducts of DEPMPO) achieved at 100 microM. To the authors' knowledge, this novel carotenoid derivative exhibits the greatest aqueous dispersibility yet described for a natural and/or synthetic C40 carotenoid, and as such, will find utility in those applications for which aqueous-phase singlet oxygen quenching and direct radical scavenging are required.  相似文献   

3.
The surface and aggregation properties of a synthetic, highly water-soluble carotenoid, the tetracationic astaxanthin-lysine conjugate (Asly), have been examined through measurements of surface tension, optical absorption and dynamic light scattering. The following parameters were determined: critical aggregation concentration c(M), surface concentration Gamma, molecular area a(m), free energy of adsorption and aggregation (DeltaG(ad) degrees and DeltaG(M) degrees , respectively), and the aggregate size r(H). The compound forms true monomolecular solutions in water below c(M); aggregates emerge only at rather high concentrations (> or =2.18 mM).  相似文献   

4.
The molecular characteristics of the monolayers of astaxanthin with polar group on the beta-ionone ring in the molecule and beta-carotene without polar group and their interactions in mixed carotenoid-phospholipid monolayers and the effects of carotenoids on the phase behavior of the phospholipid bilayers were examined by the monolayer technique and differential scanning calorimetry (DSC). We found from the monolayer study that beta-carotene had an amphiphilic nature. The molecular assembly of astaxanthin in the monolayer at the hydrophobic/hydrophilic interface was more stable than that of beta-carotene. Dimyristoylphosphatidylcholine (DMPC) in the monolayer was miscible with astaxanthin in the range of 0-0.4 mol fractions of astaxanthin, but not fully miscible with beta-carotene even at low concentrations below 0.1 mol fraction of beta-carotene. Surface potential and compression/expansion cycles of beta-carotene monolayer indicated the formation of molecular aggregates by itself. DSC study showed that when small amount of astaxanthin was added, the transition temperature of dipalmitoylphosphatidylcholine (DPPC) was markedly shifted to lower temperatures and that the transition peak was asymmetrically broadened, indicative of a significant depression in cooperativity of the gel to liquid-crystalline transition. The asymmetric DSC endothermic bands of DPPC incorporating small amounts of astaxanthin were well fit by deconvolution into two to three domains containing different concentrations of astaxanthin. On the contrary, the incorporation of beta-carotene resulted in a small depression of the main transition temperature with a slight broadening of the transition peak, suggesting a small miscibility of beta-carotene with the phospholipid bilayer or a formation of aggregates of beta-carotene in the membranes. These results suggest that there would be a high localized concentration in the phase separated membrane for astaxanthin or beta-carotene to function effectively as scavenger.  相似文献   

5.
Sediment traps were deployed in an oligotrophic, seasonally anoxic maritime Antarctic lake for 15 months. Immediately after the onset of the inflow in spring many iron oxyhydroxide aggregates were collected in the traps. Image analysis, scanning electron microscopy and energy dispersive X-ray analysis were used to examine the aggregates.The aggregates consisted of primary particles that persisted in the aggregates. The mean diameter of the aggregates was constant with depth. The aggregates consisted predominantly of iron, phosphorus and oxygen but calcium was also an important constituent. Significant concentrations of manganese and sodium were also detected. The molar ratio Fe:P remained constant at 4:1 as did the ratio Fe:Ca at 52:1. The concentration of iron, phosphorus and calcium in the aggregates increased with depth, whilst the concentration of manganese decreased with depth in parallel with a gradient of increasing anoxia.The stable water column formed under ice cover and the temporal and spatial data provide evidence that the Fe:P and Fe:Ca ratios are constant and characteristic of the aggregates, whilst the overall composition of the aggregates is more dynamic and dependant on redox conditions and water chemistry.  相似文献   

6.
Biopolymers produced extracellularly by Pseudomonas putida KT2442 were examined via atomic force microscopy (AFM) and single molecule force spectroscopy. Surface biopolymers were probed in solutions with added salt concentrations ranging from that of pure water to 1 M KCl. By studying the physicochemical properties of the polymers over this range of salt concentrations, we observed a transition in the steric and electrostatic properties and in the conformation of the biopolymers that were each directly related to bioadhesion. In low salt solutions, the electrophoretic mobility of the bacterium was negative, and large theoretical energy barriers to adhesion were predicted from soft-particle DLVO theory calculations. The brush layer in low salt solution was extended due to electrostatic repulsion, and therefore, steric repulsion was also high (polymers extended 440 nm from surface in pure water). The extended polymer brush layer was "soft", characterized by the slope of the compliance region of the AFM approach curves (-0.014 nN/nm). These properties resulted in low adhesion between biopolymers and the silicon nitride AFM tip. As the salt concentration increased to > or =0.01 M, a transition was observed toward a more rigid and compressed polymer brush layer, and the adhesion forces increased. In 1 M KCl, the polymer brush extended 120 nm from the surface and the rigidity of the outer cell surface was greater (slope of the compliance region = -0.114 nN/nm). A compressed and more rigid polymer layer, as well as a less negative electrophoretic mobility for the bacterium, resulted in higher adhesion forces between the biopolymers and the AFM tip. Scaling theories for polyelectrolyte brushes were also used to explain the behavior of the biopolymer brush layer as a function of salt concentration.  相似文献   

7.
Nature always gives us inspirations to fabricate functional materials by mimicking the structure design of biomaterials. In this article, we report that polymeric aggregates with morphology similar to the papilla on lotus leaf can be self-organized in the polymer solution by adding 16 wt% water into 5 mg/ml polycarbonate solution in N, N′-dimethylformamide. The hierarchically structured aggregates at micro- and nano-scale alone show superhydrophobic effect without the need of modification with low surface energy compound. Small amount of liquid can be wrapped by the aggregates to form the so-called liquid marble. Influence of the amount of water added into the solution on the morphology of resultant polymer aggregates was investigated. By using the hierarchical aggregates as the surface building blocks, superhydrophobic coating with a static water contact angle larger than 160° and sliding angle less than 5° (for a water drop of 5 μl) was formed. Other solutions, like acid, basic and blood plasma are also repelled on the coating.  相似文献   

8.
The fresh water green microalga Chlorella zofingiensisis known to accumulate ketocarotenoids – primarily astaxanthin but also canthaxanthin – when grown under stress conditions of high light irradiance and low nitrogen. We found that salt stress can replace light stress with respect to inducing carotenoid production: cells of C. zofingiensis grown under low light irradiance and subjected to salt and low nitrogen stress accumulated higher amounts of total secondary carotenoids than those growing under high light and low nitrogen stress. Furthermore, C. zofingiensis growing under conditions of salt stress and low light accumulated higher amounts of canthaxanthin than astaxanthin. It is suggested that for canthaxanthin accumulation under salt stress, light is not a limiting factor, but for astaxanthin accumulation high light irradiance is mandatory. These results may be applied in the future for the commercial production of canthaxanthin by C. zofingiensis in systems in which light availability is poor.  相似文献   

9.
The influence of ammonium, phosphate and citrate on astaxanthin production by the yeast Phaffia rhodozyma was investigated. The astaxanthin content in cells and the final astaxanthin concentration increased upon reduction of ammonium from 61 mM to 12.9 mM (from 140 microg/g to 230 microg/g and 1.2 microg/ml to 2.3 microg/ml, respectively). Similarly, both the astaxanthin content and astaxanthin concentration increased by reducing phosphate from 4.8 mM to 0.65 mM (160 microg/g to 215 microg/g and 1.7 microg/ml to 2.4 microg/ml, respectively). Low concentrations of ammonium or phosphate also increased the fatty acid content in cells. By analogy with lipid synthesis in other oleaginous yeasts, an examination of the data for varying nitrogen and phosphate levels suggested that citrate could be the source of carbon for fatty acids and carotenoid synthesis. Supporting this possibility was the fact that supplementation of citrate in the medium at levels of 28 mM or higher notably increased the final pigment concentration and pigment content in cells. Increased carotenoid synthesis at low ammonium or phosphate levels, and stimulation by citrate were both paralleled by decreased protein synthesis. This suggested that restriction of protein synthesis could play an important role in carotenoid synthesis by P. rhodozyma.  相似文献   

10.
In this research, low strength synthetic wastewaters with chemical oxygen demand less than 300 mg L?1 were treated at different concentrations in a bioelectrochemical desalination process. A process optimization model was utilized to study the performance of the photosynthetic bioelectrochemical desalination process. The variables include substrate (chemical oxygen demand) concentration, total dissolved solids, and microalgae biomass concentration in the cathode chamber. Relationships between the chemical oxygen demand concentration, microalgae, and salt concentrations were evaluated. Power densities and potential energy benefits from microalgal biomass growth were discussed. The results from this study demonstrated the reliability and reproducibility of the photosynthetic microbial desalination process performance followed by a response surface methodology optimization. This study also confirms the suitability of bioelectrochemical desalination process for treating low substrate wastewaters such as agricultural wastewaters, anaerobic digester effluents, and septic tank effluents for net energy production and water desalination.  相似文献   

11.
The microalga Haematococcus pluvialis Flotow is one of the natural sources of astaxanthin, a pigment widely used in salmon feed. This study was made to discover optimal conditions for biomass and astaxanthin production in H. pluvialis from Steptoe, Nevada (USA), cultured in batch mode. Growth was carried out under autotrophic (with NaNO3, NH4Cl and urea) and mixotrophic conditions (with 4, 8, 12 mM sodium acetate) under two photon flux densities (PFD) (35 and 85 mumol m-2 s-1). The carotenogenesis was induced by 1) addition of NaCl (0.2 and 0.8%), 2) N-deprivation and 3) high PFD (150 mumol m-2 s-1). Total carotenoids were estimated by spectrophotometry and total astaxanthin by HPLC. Ammonium chloride was the best N-source for growth (k = 0.7 div day-1, 228-258 mg l-1 and 2.0 x 10(5)-2.5 x 10(5) cells ml-1 at both PFD, respectively). With increasing acetate concentration, a slight increment in growth occurred only at 85 mumol m-2 s-1. Light was the best inductive carotenogenic factor, and the highest carotenoid production (4.9 mg l-1, 25.0 pg cell-1) was obtained in cultures pre-grown in nitrate at low light. The NaCl caused an increase in carotenoid content per cell at increasing salt concentrations, but resulted in a high cell mortality and did not produce any increment in carotenoid content per volume compared to cultures grown at 150 mumol m-2 s-1. The highest carotenoid content per cell (22 pg) and astaxanthin content per dry weight (10.3 mg g-1) (1% w/w) were obtained at 85 mumol m-2 s-1 with 0.8% NaCl.  相似文献   

12.
Abstract Purple bacterial aggregates found in tidal pools of Great Sippewissett Salt Marsh (Falmouth, Cape Cod, MA) were investigated in order to elucidate the ecological significance of cell aggregation. Purple sulfur bacteria were the dominant microorganisms in the aggregates which also contained diatoms and a high number of small rod-shaped bacteria. Urea in concentrations of ≥ 1 M caused disintegration of the aggregates while proteolytic enzymes, surfactants or chaotropic agents did not exhibit this effect. This suggests that polysaccharides in the embedding slime matrix stabilize the aggregate structure. In addition cell surface hydrophobicity is involved in aggregate formation. The concentration of dissolved oxygen decreased rapidly below the surface of aggregates while sulfide was not detected. The apparent respiration rate in the aggregates was high when the purple sulfur bacteria contained intracellular sulfur globules. In the presence of DCMU, respiration remained light-inhibited. Light inhibition disappeared in the presence of KCN. These results demonstrated that respiration in the aggregates is due mainly to purple sulfur bacteria. The concentration of bacteriochlorophyll (Bchl) a in the aggregates (0.205 mg Bchl a cm−3) was much higher than in the pool sediments but comparable to concentrations in microbial mats of adjacent sand flats. Purple aggregates may therefore originate in the microbial mats rather than in the pools themselves. Rapid sedimentation and high respiration rates of Chromatiaceae in the aggregates would prevent the inhibition of Bchl synthesis if aggregates were lifted off the sediment and up into the oxic pool water by tidal currents.  相似文献   

13.
Micelle formations of sodium glyco- and taurochenodeoxycholate (NaGCDC and NaTCDC) and sodium glyco- and tauroursodeoxycholates (NaGUDC and NaTUDC) was studied at 308.2 K for their critical micelle concentrations at various NaCl concentrations by pyrene fluorescence probe, and the degree of counterion binding to micelle was determined using the Corrin-Harkins plots. The degree of counterion binding was found to be 0.37-0.38 for chenodeoxycholate conjugates, while the determination of the degree was quite difficult for ursodeoxycholate conjugates. The change of I1/I3 values on the fluorescence spectrum with the conjugate bile salt concentration suggested two steps for their bile salt aggregation. The first step is a commencement of smaller aggregates, the first cmc, and the second one is a starting of stable aggregates, the second cmc. The aggregation number was determined at 308.2 K and 0.15 M NaCl concentration by static light scattering: 16.3 and 11.9 for sodium NaGCDC and NaTCDC, and 7.9 and 7.1 for NaGUDC and NaTUDC, respectively. The solubilization of cholesterol into the bile salt micelles in the presence of coexisting cholesterol phase and the maximum additive concentration (MAC) of cholesterol was determined against the bile salt concentration. The standard Gibbs energy change for the solubilization was evaluated, where the micelles were regarded as a chemical species. The solubilization was stabilized in the order of NaGUDC approximately = NaTUDC < NaTC < NaGC < NaTCDC < NaGCDC < NaTDC < NaGDC, where the preceding results were taken into the order.  相似文献   

14.
Fully synchronised germination of Haematococcus pluvialis astaxanthin-replete aplanospores was induced by transfer to nitrogen-sufficient conditions under either high or low light intensities, and growth, pigment content and nitrogen consumption were monitored during the cell cycle. No germination of the aplanospores was achieved in the absence of nitrate, even when cells were transferred at low light intensities. On the other hand, cell density and chlorophyll concentration increased dramatically and astaxanthin concentration decreased in N-sufficient cultures due to the germination of 100% of the aplanospores, as demonstrated by flow cytometry. No significant effect of light intensity was observed on the degradation of astaxanthin during germination. In germinated cultures, nitrogen was depleted more rapidly under high light conditions, which resulted in earlier entry into the aplanospore stage and accumulation of astaxanthin. Germination of aplanospores accompanied by astaxanthin degradation could also be obtained in the dark in nutrient-sufficient conditions although at a much lower efficiency. The results demonstrate that nutrient availability is the main factor controlling the transition between red and green stages of H. pluvialis, with astaxanthin being accumulated only when cell division has ceased. High light levels accelerate the process by increasing the rate of nutrient depletion and providing more energy for astaxanthin synthesis.  相似文献   

15.
The solubilization of multilamellar egg yolk lecithin liposomes by sodiumtaurodeoxycholate in aqueous phase was studied by ultrafiltration as a function of time, bile salt and cholesterol concentration. The corresponding equilibrium states were analysed. Complete solubilization was achieved at total bile salt/lecithin molar mixing ratios of approximately 5. The minimum ratio to start solubilization was 0.1, corresponding to a free bile salt concentration of only 5% of the critical micelle concentration (CMC). Mean equilibrium constants for the partition of bile salts between non-filterable aggregates and filterable mixed micelles and also the free bile salt concentration were determined. Sodiumtaurodeoxycholate had a higher affinity for small mixed micelles than for lamellar mixed aggregates especially in the presence of cholesterol, which reduces the degree and rate of the solubilization process. A non-homogeneous distribution of bile salts in the lipid phase was detected at low bile salt concentrations.  相似文献   

16.
Aims: Isolation, characterization and identification of Phaffia sp. ZJB 00010, and improvement of astaxanthin production with low‐energy ion beam implantation. Methods and Results: A strain of ZJB 00010, capable of producing astaxanthin, was isolated and identified as Phaffia rhodozyma, based on its physiological and biochemical characteristics as well as its internal transcribed spacer (ITS) rDNA gene sequence analysis. With low‐energy ion beam implantation, this wild‐type strain was bred for improving the yield of astaxanthin. After ion beam implantation, the best mutant, E5042, was obtained. The production of astaxanthin in E5042 was 2512 μg g?1 (dry cell weight, DCW), while the wild‐type strain was about 1114 μg g?1 (DCW), an increase of 125·5%. Moreover, the fermentation conditions of mutant E5042 for producing astaxanthin were optimized. The astaxanthin production under the optimized conditions was upscaled and studied in a 50‐l fermentor. Conclusions: A genetically stable mutant strain with high yield of astaxanthin was obtained using low‐energy ion beam implantation. This mutant may be a suitable candidate for the industrial‐scale production of astaxanthin. Significance and Impact of the Study: Astaxanthin production in Phaffia rhodozyma could be fficiently improved by low‐energy ion beam implantation, which is a new technology in the mutant breeding of micro‐organisms. The mutant obtained in this work could potentially be utilized in industrial production of astaxanthin.  相似文献   

17.
The salt-induced aggregation of the light-harvesting complex (LHC) II isolated from spinach and its correlation with fluorescence quenching of chlorophyll a is reported. Two transitions with distinctly different properties were observed. One transition related to salt-induced fluorescence quenching takes place at low salt concentration and is dependent both on temperature and detergent concentration. This transition seems to be related to a change in the lateral microorganization of LHCII. The second transition occurs at higher salt concentration and involves aggregation. It is independent of temperature and of detergent at sub-cmc concentrations. During the latter transition the small LHCII sheets (approximately 100 nm in diameter) are stacked to form larger aggregates of approximately 3 microm diameter. Based on the comparison between the physical properties of the transition and theoretical models, direct and specific binding of cations can practically be ruled out as driving force for the aggregation. It seems that in vitro aggregation of LHCII is caused by a complex mixture of different effects such as dielectric and electrostatic properties of the solution and surface charges.  相似文献   

18.
Liquid-liquid phase-separation data were obtained for aqueous saline solutions of hen egg-white lysozyme at a fixed protein concentration (87 g/l). The cloud-point temperature (CPT) was measured as a function of salt type and salt concentration to 3 M, at pH 4.0 and 7.0. Salts used included those from mono and divalent cations and anions. For the monovalent cations studied, as salt concentration increases, the CPT increases. For divalent cations, as salt concentration rises, a maximum in the CPT is observed and attributed to ion binding to the protein surface and subsequent water structuring. Trends for sulfate salts were dramatically different from those for other salts because sulfate ion is strongly hydrated and excluded from the lysozyme surface. For anions at fixed salt concentration, the CPT decreases with rising anion kosmotropic character. Comparison of CPTs for pH 4.0 and 7.0 revealed two trends. At low ionic strength for a given salt, differences in CPT can be explained in terms of repulsive electrostatic interactions between protein molecules, while at higher ionic strength, differences can be attributed to hydration forces. A model is proposed for the correlation and prediction of the CPT as a function of salt type and salt concentration. NaCl was chosen as a reference salt, and CPT deviations from that of NaCl were attributed to hydration forces. The Random Phase Approximation, in conjunction with a square-well potential, was used to calculate the strength of protein-protein interactions as a function of solution conditions for all salts studied.  相似文献   

19.
Haematococcus pluvialis synthesizes a high yield of astaxanthin using CO2 in a photoautotrophic culture without contaminant heterotrophs; however, it takes too long to induce astaxanthin production. In this study, a highly photosensitive mutant strain was attained by conventional random mutagenesis and an efficient isolation method to shorten induction time. Sensitivity to photoinhibition in this mutant was raised by a partial lesion in the photosystem II (PSII) of photosynthesis, thereby prompting a change in cellular morphology as well as stimulating carotenogenesis (astaxanthin production). As a result, the concentrations of cell biomass and astaxanthin were dramatically increased by 27% and 62% under strong light and 79% and 153% under moderate light, respectively. This Haematococcus mutant would be useful for the economical astaxanthin production capable of reducing the light energy cost in a photoautotrophic culture system, even in areas with insufficient sunlight.  相似文献   

20.
The heterogeneity in bacterial surface macromolecules was probed by examining individual macromolecules on the surface of Pseudomonas putida KT2442 via single-molecule force spectroscopy (SMFS). Using an atomic force microscope (AFM), the silicon nitride tip was brought into contact with biopolymer molecules on bacterial cells and these macromolecules were stretched. Force-extension measurements on different bacterial cells showed a range of adhesion affinities and polymer lengths. However, substantial heterogeneity was also observed in the force-extension curves on a single bacterium. A given bacterium has biopolymers that range in size from tens to hundreds of nanometers, with adhesion affinities for the AFM tip from nearly zero to greater than 1 nN. A distribution of polymer sizes was confirmed by size-exclusion chromatography. The freely jointed chain (FJC) model for polymer elasticity was applied to individual force-extension curves in order to estimate the contour lengths and segment lengths of the polymer chains. A range of segment lengths was obtained using the FJC model, from 0.154-0.45 nm in water, 0.154-0.32 nm in 0.01 M KCl, and 0.154-0.65 nm in 0.1 M KCl. The modeling confirms that the heterogeneity in biopolymers is more than a matter of differences in molecular weights, since a range of stiffnesses (segment lengths) was also observed. The effect of salt concentration on biopolymer conformation and adhesion was also explored. While the biopolymers were flexible in all solvents, they were slightly more extended in water than in either of the salt solutions (0.01 and 0.1 M KCl). The adhesion of polysaccharides with the AFM tip was not dependent on salt concentration, because the polymers were not highly charged and heterogeneity overwhelmed any trends that could be observed in adhesion with respect to solution ionic strength. These experiments indicate that heterogeneity in biopolymer properties on an individual bacterium and within a population of bacterial cells may be much greater than previously believed and should be incorporated into models of bacterial adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号