首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maedi-visna virus (MVV) is a lentivirus of sheep causing chronic inflammatory disease of the lungs (maedi) and the nervous system (visna). We have previously shown that a duplicated sequence in the long terminal repeat (LTR) of MVV is a determinant of cell tropism. Here, we demonstrate that deletion of a CAAAT sequence from either one of the repeats resulted in poor virus growth in sheep choroid plexus cells. A duplication in the LTR encompassing the CAAAT sequence was found in four neurological field cases that were sequenced, but no duplication was present in the LTRs from seven maedi cases; one maedi isolate was mixed. These results indicate that the duplication in the LTR is associated with neurovirulence.  相似文献   

2.
3.
4.
The neurobiology of human immunodeficiency virus infections   总被引:14,自引:0,他引:14  
A variety of diseases of the central and peripheral nervous systems evolves during the course of human immunodeficiency virus (HIV) infections. Most are not related to documented opportunistic infections and may be the direct result of HIV infections, as large proportions of healthy and ill HIV-infected persons show evidence of nervous system infection. These diseases occur at different times during the infection and have diverse inflammatory, demyelinating, or degenerative pathological features that suggest different pathogenetic mechanisms. The route and determinants of HIV invasion of the nervous system are unknown. Within the brain, viral antigen and RNA are found predominantly in macrophages, but the reason why profound dementia and cortical atrophy result from this infection remains a mystery. By analogy to other lentivirus infections, particularly visna virus in sheep, neuropathological changes may be mediated by cytokines. Other possible pathogenetic mechanisms include toxicity of viral polypeptides, transactivation of viral or cellular genes, autoimmunity, or other opportunistic infections. Clarification of the pathogenesis of HIV-related diseases is critical to the design of rational therapies.  相似文献   

5.
Visna virus is a lentivirus which causes fusion of infected cells in vitro. Two types of fusion occur. Fusion from without requires no viral replication and a relatively high multiplicity of infection; fusion from within results from the replication of virus in cells. By using fusion from without as an assay, the mechanism of fusion by visna virus was investigated. Immune sera which contained both anti-fusion and neutralizing antibodies interacted with the virus with rapid kinetics in blocking fusion but relatively slow kinetics in the virus neutralization assay. By using visna virus and an antigenic variant, the epitopes responsible for fusion and virus neutralization were shown to be different. Antigenic variation of visna virus resulted in alteration of the neutralization epitope and conservation of the fusion epitope. This suggested that there were two populations of antibodies and that the viral epitopes for fusion and neutralization were separate. These data suggest that visna virus is capable of infecting cells via two pathways: one via the fusion site and the other via the viral epitope which mediates neutralization.  相似文献   

6.
Previous studies have demonstrated that mouse hepatitis virus (MHV) hepatotropism is determined largely by postentry events rather than by availability of the viral receptor. In addition, mutation of MHV nonstructural protein 2 (ns2) abrogates the ability of the virus to replicate in the liver and induce hepatitis but does not affect replication in the central nervous system (CNS). Here we show that replication of ns2 mutant viruses is attenuated in bone marrow-derived macrophages (BMM) generated from wild-type (wt) mice but not in L2 fibroblasts, primary astrocytes, or BMM generated from type I interferon receptor-deficient (IFNAR(-/-)) mice. In addition, ns2 mutants are more sensitive than wt virus to pretreatment of BMM, but not L2 fibroblasts or primary astrocytes, with alpha/beta interferon (IFN-α/β). The ns2 mutants induced similar levels of IFN-α/β in wt and IFNAR(-/-) BMM, indicating that ns2 expression has no effect on the induction of IFN but rather that it antagonizes a later step in IFN signaling. Consistent with these in vitro data, the virulence of ns2 mutants increased to near that of wt virus after depletion of macrophages in vivo. These data imply that the ability of MHV to replicate in macrophages is a prerequisite for replication in the liver and induction of hepatitis but not for replication or disease in the CNS, underscoring the importance of IFN signaling in macrophages in vivo for protection of the host from hepatitis. Our results further support the notion that viral tissue tropism is determined in part by postentry events, including the early type I interferon response.  相似文献   

7.
Dimerization of retroviral genomic RNA is essential for efficient viral replication and is mediated by structural interactions between identical RNA motifs in the viral leader region. We have visualized, by electron microscopy, RNA dimers formed from the leader region of the prototype lentivirus, maedi visna virus. Characterization by in vitro assays of the domains responsible for this interaction has identified a 20 nucleotide sequence that functions as the core dimerization initiation site. This region is predicted to form a GACG tetraloop and therefore differs significantly from the kissing loop palindromes utilized to initiate dimerization in primate lentiviruses. The motif is strongly conserved across the ovine and caprine lentiviruses, implying a critical functional role. Furthermore, the proposed GACG tetraloop exhibits marked structural homology with similar structural motifs present in the leader regions of the alpha- and gamma-retroviruses, and the maedi visna virus dimer linkage region is capable of forming heterodimeric species with the Moloney murine leukemia virus Psi domain. This may be indicative of commonality of origin of the two viruses or convergent evolution.  相似文献   

8.
9.
The identification of monogenic and complex genes responsible for neurological disorders requires new approaches for delivering therapeutic protein genes to significant numbers of cells in the central nervous system. A lentivirus-based vector capable of infecting dividing and quiescent cells was investigated in vivo by injecting highly concentrated viral vector stock into the striatum and hippocampus of adult rats. Control brains were injected with a Moloney murine leukemia virus, adenovirus, or adeno-associated virus vector. The volumes of the areas containing transduced cells and the transduced-cell densities were stereologically determined to provide a basis for comparison among different viral vectors and variants of the viral vector stocks. The efficiency of infection by the lentivirus vector was improved by deoxynucleoside triphosphate pretreatment of the vector and was reduced following mutation of integrase and the Vpr-matrix protein complex involved in the nuclear translocation of the preintegration complex. The lentivirus vector system was able to efficiently and stably infect quiescent cells in the primary injection site with transgene expression for over 6 months. Triple labeling showed that 88.7% of striatal cells transduced by the lentivirus vector were terminally differentiated neurons.  相似文献   

10.
Samuel MA  Diamond MS 《Journal of virology》2005,79(21):13350-13361
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.  相似文献   

11.
12.
13.
This study documents that the immunosuppressive lymphocytic choriomeningitis virus (LCMV) variant, clone 13, shows a specific predilection for enhanced infection of macrophages both in vitro and in vivo and that single amino acid changes in the viral polymerase and glycoprotein are responsible for macrophage tropism. The growth difference seen between variant clone 13 and the parental Armstrong strain was specific for macrophages, since both clone 13 and Armstrong grew equally well in fibroblasts and neither isolate infected lymphocytes efficiently. Complete sequencing of the clone 13 genome, along with genetic analysis, showed that a single amino acid change in the polymerase (K-->Q at position 1079) was the major determinant of virus yield in macrophages. This was proven unequivocally by comparing the sequences of parental and reassortant viruses, which were identical at all loci except for the single mutation in the polymerase gene. This finding was further strengthened by showing that reversion at this site back to lysine (Q-->K) resulted in loss of macrophage tropism. In addition, an independently derived macrophage-tropic variant of LCMV, clone 28b, had a K-->N mutation at the same position. Thus, these results show that substitution of the positively charged amino acid K with a neutral amino acid (either Q or N) at residue 1079 of the polymerase resulted in enhanced viral replication in macrophages. In addition to the polymerase change, a mutation in the glycoprotein was also associated with macrophage tropism. This single amino acid change in the glycoprotein (F-->L at position 260) did not affect virus yield per macrophage but was critical in determining the number of macrophages infected. Our previous studies have shown that the same two mutations in the polymerase and glycoprotein are essential for establishing a chronic infection in adult mice. Since the same mutations confer macrophage tropism and ability to persist in vivo, these studies provide compelling evidence that infection of macrophages is a critical determinant of viral persistence and immune suppression.  相似文献   

14.
15.
16.
Lentiviruses are known to encode factors which trans activate expression from the viral long terminal repeat (LTR); the primary trans activator is the tat gene product. One of the putative accessory genes (tat) of the bovine immunodeficiency-like virus (BIV) bears sequence similarity to other lentivirus tat genes. This finding suggests that BIV may encode a trans-activating protein capable of stimulating LTR-directed gene expression. To test this hypothesis in vitro, BIV LTR-chloramphenicol acetyltransferase (CAT) reporter gene plasmids were constructed and transfected into three cell lines established from canine, bovine, or lapine tissues that are susceptible to BIV infection. The level of BIV LTR-directed CAT gene expression was significantly elevated in BIV-infected cells compared with uninfected cells. The relatively high basal-level expression of BIV LTR-CAT in uninfected canine and bovine cell lines suggests that cellular factors play a role in regulating BIV LTR-directed gene expression. Additionally, by using a clonal canine cell line in which the BIV LTR-CAT plasmid is stably expressed, BIV LTR-directed CAT expression is elevated 15- to 80-fold by cocultivation with BIV-infected cells, supporting the notion that BIV encodes a trans activator. The relative specificity of this viral activation was assessed by coculturing the clonal BIV LTR-CAT cell line with bovine leukemia virus- or bovine syncytial virus-infected cells; these bovine retroviruses increased expression from the BIV LTR only two- to threefold. Thus, BIV LTR regulatory elements in infected cells, like those of human immunodeficiency virus type 1 and other lentiviruses, are trans activated, presumably through the action of a Tat-like protein and cellular factors.  相似文献   

17.
The lentiviruses of sheep, goats, and horses cause chronic multiorgan disease in which macrophages are highly permissive for viral replication. Monocytes, which mature into macrophages, are thought to be latently infected with lentivirus, but the extent to which other leukocytes are infected is unknown. Dendritic cells have not been studied separately from monocytes and T-cell subsets have not been examined in previous attempts to identify infected cells in peripheral blood mononuclear cells (PBMC). We found no evidence of T-cell tropism using an animal-passaged, pathogenic ovine lentivirus. Phytohemagglutinin-stimulated infectious PBMC produced 20-fold less virus than differentiated macrophages, and cocultivation of infectious PBMC with fresh, uninfected phytohemagglutinin blasts did not facilitate virus replication. Furthermore, central lymph cells, the best in vivo source of purified lymphocytes, lacked virus and did not yield virus upon in vitro cultivation. In contrast, cultivated blood-derived macrophages were highly permissive for viral replication. To identify the latently infected PBMC, PBMC from infected sheep were selectively depleted of monocytes and B cells by passage over nylon wool and then of nonadherent cells bearing CD4, CD8, T19, gamma delta T-cell receptor, CD45RA, or major histocompatibility complex class II antigens by panning. Removal of adherent monocytes and B cells or of adherent cells and the three major T-cell subsets (CD4+, CD8+, T19+) did not decrease the infectivity of PBMC. The richest sources of infected cells in fresh PBMC were CD45RA+ and major histocompatibility complex class II+ nonadherent cells, which are three characteristics of dendritic cells. Thus, the dendritic cell, and not the monocyte or the CD4+ cell, is probably the predominant infected cell type in blood.  相似文献   

18.
Koike S 《Uirusu》2004,54(2):205-212
Poliovirus is the causative agent of an acute disease of the central nervous system, poliomyelitis. Poliovirus will be eradicated in the near future by a world-wide vaccination program. Poliovirus is a neurotropic virus that produces severe lesions selectively in the CNS. However, a basic question why poliovirus exhibits neurotropic property has not been elucidated. Poliovirus receptor and host factors involved in the translation initiation of viral protein, which are required for virus replication, play important roles in determining tissue tropism. We found that type I interferon response is also an important determinant of poliovirus tissue tropism. Type I interferon inhibits viral replication in the non-target tissues. The tissue tropism of poliovirus may be determined based on the balance of these mechanisms.  相似文献   

19.
20.
The coronavirus mouse hepatitis virus (MHV) induces a minimal type I interferon (IFN) response in several cell types in vitro despite the fact that the type I IFN response is important in protecting the mouse from infection in vivo. When infected with MHV, mice deficient in IFN-associated receptor expression (IFNAR−/−) became moribund by 48 h postinfection. MHV also replicated to higher titers and exhibited a more broad tissue tropism in these mice, which lack a type I IFN response. Interestingly, MHV induced IFN-β in the brains and livers, two main targets of MHV replication, of infected wild-type mice. MHV infection of primary cell cultures indicates that hepatocytes are not responsible for the IFN-β production in the liver during MHV infection. Furthermore, macrophages and microglia, but not neurons or astrocytes, are responsible for IFN-β production in the brain. To determine the pathway by which MHV is recognized in macrophages, IFN-β mRNA expression was quantified following MHV infection of a panel of primary bone marrow-derived macrophages generated from mice lacking different pattern recognition receptors (PRRs). Interestingly, MDA5, a PRR thought to recognize primarily picornaviruses, was required for recognition of MHV. Thus, MHV induces type I IFN in macrophages and microglia in the brains of infected animals and is recognized by an MDA5-dependent pathway in macrophages. These findings suggest that secretion of IFN-β by macrophages and microglia plays a role in protecting the host from MHV infection of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号