首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pivotal role of estrogens in the pain sensitivity has been investigated in many ways. Traditionally, it is ascribed to the slow genomic changes mediated by classical nuclear estrogen receptors (ER), ER?? and ER??, depending on peripheral estrogens. Recently, it has become clear that estrogens can also signal through membrane ERs (mERs), such as G-protein-coupled ER1 (GPER1), mediating the non-genomic effects. However, the spinal specific role played by ERs and the underlying cellular mechanisms remain elusive. The present study investigated the rapid estrogenic regulation of nociception at the spinal level. Spinal administration of 17??-estradiol (E2), the most potent natural estrogen, acutely produced a remarkable mechanical allodynia and thermal hyperalgesia without significant differences among male, female and ovariectomized (Ovx) rats. E2-induced the pro-nociceptive effects were partially abrogated by ICI 182,780 (ERs antagonist), and mimicked by E2-BSA (a mER agonist). Inhibition of local E2 synthesis by 1,4,6-Androstatrien-3,17-dione (ATD, a potent irreversible aromatase inhibitor), or blockade of ERs by ICI 182,780 produced an inhibitory effect on the late phase of formalin nociceptive responses. Notably, lumbar puncture injection of G15 (a selective GPER1 antagonist) resulted in similar but more efficient inhibition of formalin nociceptive responses as compared with ICI 182,780. At the cellular level, the amplitude and decay time of spontaneous inhibitory postsynaptic currents were attenuated by short E2 or E2-BSA treatment in spinal slices. These results indicate that estrogen acutely facilitates nociceptive transmission in the spinal cord via activation of membrane-bound estrogen receptors.  相似文献   

2.
Estrogen actions in target organs are normally mediated via activation of nuclear estrogen receptors (ERs). By using mRNA differential display technique, we show, herein, that estradiol-17beta (E(2)) and its catechol metabolite 4-hydroxy-E(2) (4OHE(2)) can modulate uterine gene expression in ERalpha(-/-) mice. Whereas administration of E(2) or 4OHE(2) rapidly up-regulated (4-8-fold) the expression of immunoglobulin heavy chain binding protein (Bip), calpactin I (CalP), calmodulin (CalM), and Sik similar protein (Sik-SP) genes in ovariectomized wild-type or ERalpha(-/-) mice, the expression of secreted frizzled related protein-2 (SFRP-2) gene was down-regulated (4-fold). Bip, CalP, and CalM are calcium-binding proteins and implicated in calcium homeostasis, whereas SFRP-2 is a negative regulator of Wnt signaling. Bip and Sik-SP also possess chaperone-like functions. Administration of ICI-182,780 or cycloheximide failed to influence these estrogenic responses, demonstrating that these effects occur independent of ERalpha, ERbeta, or protein synthesis. In situ hybridization showed differential cell-specific expression of these genes in wild-type and ERalpha(-/-) uteri. Although progesterone can antagonize or synergize estrogen actions, it had minimal effects on these estrogenic responses. Collectively, the results demonstrate that estrogens have a unique ability to influence specific genes in the uterus not involving classical nuclear ERs.  相似文献   

3.
4.
Estrogen receptors: orchestrators of pleiotropic cellular responses   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

5.
6.
7.
8.
Estrogen signaling multiple pathways to impact gene transcription   总被引:2,自引:0,他引:2  
  相似文献   

9.
Both estrogen receptors (ER) alpha (ERalpha) and beta (ERbeta) are localized in the nucleus, plasma membrane, and mitochondria, where they mediate the different physiological effects of estrogens. It has been observed that the relative subcellular localization of ERs is altered in several cancer cells. We have demonstrated that MCF-10F cells, the immortal and non-tumorigenic human breast epithelial cells (HBEC) that are ERalpha-negative and ERbeta-positive, are transformed in vitro by 17beta-estradiol (E(2)), generating highly invasive cells that are tumorigenic in severe combined immunodeficient mice. E(2)-transformed MCF-10F (trMCF) cells exhibit progressive loss of ductulogenesis, invasive (bsMCF) and tumorigenic (caMCF) phenotypes. Immunolocalization of ERbeta by confocal fluorescent microscopy and electron microscopy revealed that ERbeta is predominantly localized in mitochondria of MCF-10F and trMCF cells. Silencing ERbeta expression with ERbeta-specific small interference RNA (siRNA-ERbeta) markedly diminishes both nuclear and mitochondrial ERbeta in MCF-10F cells. The ERbeta shifts from its predominant localization in the mitochondria of MCF-10F and trMCF cells to the nucleus of bsMCF cells, becoming predominantly nuclear in caMCF cells. Furthermore, we demonstrated that the mitochondrial ERbeta in MCF-10F cells is involved in E(2)-induced expression of mitochondrial DNA (mtDNA)-encoded respiratory chain (MRC) proteins. This is the first report of an association of changes in the subcellular localization of ERbeta with various stages of E(2)-induced transformation of HBEC and a functional role of mitochondrial ERbeta in mediating E(2)-induced MRC protein synthesis. Our findings provide a new insight into one of the potential roles of ERbeta in human breast cancer.  相似文献   

10.
This article is part of a Special Issue “Estradiol and cognition”.Over the past 30 years, research has demonstrated that estrogens not only are important for female reproduction, but also play a role in a diverse array of cognitive functions. Originally, estrogens were thought to have only one receptor, localized exclusively to the cytoplasm and nucleus of cells. However, it is now known that there are at least three estrogen receptors (ERs): ERα, ERβ and G-protein coupled ER1 (GPER1). In addition to being localized to nuclei, ERα and ERβ are localized to the cell membrane, and GPER1 is also observed at the cell membrane. The mechanism through which ERs are associated with the membrane remains unclear, but palmitoylation of receptors and associations between ERs and caveolin are implicated in membrane association. ERα and ERβ are mostly observed in the nucleus using light microscopy unless they are particularly abundant. However, electron microscopy has revealed that ERs are also found at the membrane in complimentary distributions in multiple brain regions, many of which are innervated by dopamine inputs and were previously thought to contain few ERs. In particular, membrane-associated ERs are observed in the prefrontal cortex, dorsal striatum, nucleus accumbens, and hippocampus, all of which are involved in learning and memory. These findings provide a mechanism for the rapid effects of estrogens in these regions. The effects of estrogens on dopamine-dependent cognition likely result from binding at both nuclear and membrane-associated ERs, so elucidating the localization of membrane-associated ERs helps provide a more complete understanding of the cognitive effects of these hormones.  相似文献   

11.
Estrogens are known to play a role in the feedback regulation of pituitary gonadotropin secretion in adults. However, it is still unknown whether estrogens are involved in promoting pituitary development. In this study, we selected chick embryo as the animal model and microinjected different doses of estradiol (E2) at stage E27–28, which was when endogenous E2 was not detected. First, the results demonstrated that E2 at different doses promoted pituitary cell proliferation and gonadotroph differentiation. Lower doses of E2 had a more significant effect on cell proliferation, while higher doses of E2 were required for luteinizing hormone (LH) secreting cell differentiation. Furthermore, the levels of early growth response protein 1 (Egr-1) and GATA2 mRNAs were also elevated with E2 treatment at a higher dose than that required to increase the level of proliferating cell nuclear antigen (PCNA) in vitro. To investigate whether estrogen receptors (ERs) mediate these effects of estradiol, the ER antagonist ICI 182,780 was added, and the results showed that ICI 182,780 did not modify the enhancing effects of E2 on cell proliferation; however, it inhibited the stimulatory effect of E2 on LH secreting cell differentiation. These results suggest that E2 at different doses promotes pituitary cell proliferation and gonadotroph differentiation with different mechanisms. Our results are important to further understanding of the physiological and pharmacological functions and related mechanisms of estrogens and their receptors, although the related mechanism need to be elucidated in future studies.  相似文献   

12.
13.
14.
15.
Cultured female-derived human bone cells (hObs) responded by different parameters to different phytoestrogenic and vitamin D compounds. Pre- and post-menopausal hObs express ERα and ERβ mRNA with higher abundance of ERα. Pre-treatment with the less-calcemic vitamin D analog JKF 1624F(2)-2 (JKF) upregulated responsiveness to estrogens via modulation of ERs expression. These estrogenic compounds induce the expression and activity of 25 hydroxy-vitamin D(3)-1α hydroxylase (1OHase). We now analyzed the effects of carboxy-genistein (cG), carboxy-biocainin A (cBA) and carboxy-daidzein (cD), of BA, D or G and of licorice derived compounds glabridin (Glb) and glabrene (Gla) and estradiol-17β (E(2)) on DNA synthesis, creatine kinase specific activity (CK), intracellular and membranal E(2) binding and their modulations by JKF in hObs. We also analyzed modulation by phytoestrogenic compounds of 1OHase mRNA expression and activity. We showed that: (1) all compounds stimulated DNA synthesis and CK. (2) JKF and all estrogenic compounds modulated ERα and ERβ mRNA expression. (3) Pre-treatment with JKF increased DNA synthesis and CK responses only to E(2), D, G and Gla. (4) JKF increased the intracellular competitive binding only of E(2), D and G. (5) JKF abolished the membranal binding of all protein-bound estrogens. (6) JKF and all estrogenic compounds except the protein-bound ones up-regulated 1OHase expression and activity. In conclusion phytoestrogens and their analogs increase DNA synthesis and CK, and lead to increased production of 1,25(OH)(2)D(3) in hObs, while pre-treatment with JKF modulates the effect of estrogenic compounds via regulation of ERs mRNA expression in a yet unclear mechanism.  相似文献   

16.
17.
A ligand-receptor pair, bone morphogenetic protein-7 (BMP7) and activin receptor IIB (actRIIB), was identified from a pool of DNA fragments recovered from MCF7 cells treated with 17beta-estradiol (E2) by chromatin immunoprecipitation with antiestrogen receptor-alphaantibody. The E2 responsiveness of both genes was confirmed in MCF cells and in the mouse uterus. Repeated treatment with E2 resulted in decreased expression of both actRIIB and BMP7 mRNA in the uteri of ovariectomized mice. A single oral administration of bisphenol A (BPA), an environmental estrogen, inhibited actRIIB and BMP7 expression and apoptosis in the luminal epithelium of the mouse uterus at diestrus (or early proestrus). This decrease, due to BPA administration, was restored by an estrogen receptor (ER) antagonist suggesting that it is mediated through ERs. These results suggest that E2 and BPA suppress estrogen-dependent apoptosis of epithelial cells of the endometrium through down-regulation of actRIIB and BMP7. Thus, we propose that BMP7 and actRIIB, a ligand-receptor pair, are involved in regulation of the apoptotic signaling pathway and might therefore be new biomarkers of the effects of environmental estrogens on the female reproductive tract.  相似文献   

18.
Nakamagoe M  Tabuchi K  Nishimura B  Hara A 《Steroids》2011,76(13):1443-1450
As neuroactive steroids, sex steroid hormones have non-reproductive effects. We previously reported that 17β-estradiol (βE2) had protective effects against gentamicin (GM) ototoxicity in the cochlea. In the present study, we examined whether the protective action of βE2 on GM ototoxicity is mediated by the estrogen receptor (ER) and whether other estrogens (17α-estradiol (αE2), estrone (E1), and estriol (E3)) and other neuroactive steroids, dehydroepiandrosterone (DHEA) and progesterone (P), have similar protective effects. The basal turn of the organ of Corti was dissected from Sprague-Dawley rats and cultured in a medium containing 100 μM GM for 48 h. The effects of βE2 and ICI 182,780, a selective ER antagonist, were examined. In addition, the effects of other estrogens, DHEA and P were tested using this culture system. Loss of outer hair cells induced by GM exposure was compared among groups. βE2 exhibited a protective effect against GM ototoxicity, but its protective effect was antagonized by ICI 182,780. αE2, E1, and E3 also protected hair cells against gentamicin ototoxicity. DHEA showed a protective effect; however, the addition of ICI 182,780 did not affect hair cell loss. P did not have any effect on GM-induced outer hair cell death. The present findings suggest that estrogens and DHEA are protective agents against GM ototoxicity. The results of the ER antagonist study also suggest that the protective action of βE2 is mediated via ER but that of DHEA is not related to its conversion to estrogen and binding to ER. Further studies on neuroactive steroids may lead to new insights regarding cochlear protection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号