首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used primary cultures of swine granulosa cells to investigate the regulatory role of the protein kinase C pathway in the ovary. In this system, we observed the following. Swine granulosa cells bound [3H]phorbol 12,13-dibutyrate [( 3H]PDB) specifically with high affinity [apparent Ki for 12-O-tetradecanoylphorbol 13-acetate (TPA) = 3.1 (2.1-4.7) nM] and low capacity [0.68 (0.34-0.99) pmol/10(7) cells]. The cytosol of granulosa cells contained functionally active protein kinase C capable of phosphorylating distinct proteins in response to stimulation with active phorbol ester. TPA and PDB induced dose-dependent inhibition (greater than 85%) of follicle-stimulating-hormone (FSH)-stimulated progesterone production. Half-maximally inhibitory concentrations were 0.10 and 0.75 nM for TPA and PDB respectively, whereas phorbol analogues that do not activate protein kinase C were not inhibitory. TPA did not impede cyclic AMP generation in response to FSH, cholera toxin or forskolin acutely (within 48 h), but did inhibit the stimulatory effects of 8-bromo cyclic AMP, insulin and oestradiol on progesterone biosynthesis. In the presence of maximally effective concentrations of 25-hydroxy-, 20 alpha-hydroxy- or 22R-hydroxy-cholesterol as exogenous sterol substrates for cholesterol side-chain cleavage, treatment with TPA suppressed pregnenolone, progesterone and 20 alpha-hydroxypregn-4-en-3-one biosynthesis by more than 80%. The inhibitory effects of phorbol esters were not attributable to non-specific cytotoxicity, since prostaglandin F2 alpha production increased in the same cultures and aromatization of exogenously supplied testosterone to oestradiol was not suppressed. In intact granulosa cells, the effects of phorbol esters were mimicked by a synthetic non-diterpene diacylglycerol, 1-octanoyl-2-acetylglycerol, and the tumour promoter, mezerein, which specifically activates protein kinase C. We conclude that swine granulosa cells contain specific high-affinity receptors for phorbol esters that are functionally coupled to protein phosphorylation. Moreover, treatment with phorbol esters or non-phorbol activators of protein kinase C results in selective inhibition of cholesterol side-chain cleavage activity without impairing cyclic AMP generation or oestrogen biosynthesis.  相似文献   

2.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

3.
Preincubation of duck erythrocytes with tumor promoting phorbol diesters or catecholamines leads to attenuation of adenylate cyclase activity. 12-0-Tetradecanoyl phorbol-13-acetate (TPA) and phorbol 12,13-dibutyrate treatment induced a 38% and 30% desensitization of isoproterenol-stimulated adenylate cyclase activity, respectively. In contrast, the inactive phorbol diester, 4 alpha-phorbol 12,13-didecanoate, was without effect in promoting adenylate cyclase desensitization. The catecholamine isoproterenol induced a 51% desensitization. Incubation of 32Pi labeled erythrocytes with TPA promoted a 3- to 4-fold increase in phosphorylation of the beta-adrenergic receptor as did incubation with isoproterenol. Treatment of the cells with both TPA and isoproterenol together resulted in desensitization and receptor phosphorylation which were no greater than those observed with either agent alone. These data suggest a potential role for protein kinase C in regulating beta-adrenergic receptor function.  相似文献   

4.
The effects of short-term phorbol ester treatment of CHO cells that stably express 900 fmol of recombinant human serotonin 5-HT1A receptor/mg of protein on coupling to the inhibition of adenylyl cyclase and on phosphorylation of the receptor were studied. Pretreatment of cell monolayers with phorbol 12-myristate 13-acetate (PMA) caused a dose- and time-dependent shift of the half-maximal dose of serotonin (5-HT) required to inhibit membrane adenylyl cyclase (from IC50 approximately 100 nM to approximately 400 nM). This desensitization (shift in IC50) was rapid, occurring with 5 min of pretreatment and being maximal by 10-15 min; it was also dose-dependent, being half-maximal at approximately 300 nM PMA. Desensitization was also induced by sn-dioctanoylglycerol (DiC8) and blocked by the protein kinase C (PKC) inhibitors sphingosine and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). In detached permeabilized cells, PMA pretreatment caused a rapid phosphorylation of immunoprecipitated 5-HT1A receptors, with an approximately 3-4-fold increase that was maximal after 15 min and persisted for 90 min. The phosphorylation occurred at a similar dose of PMA as that which induced desensitization (half-maximal at approximately 300 nM, maximal at 500 nM to 1 microM), could be reproduced by pretreatment with the PKC activators DiC8 or phorbol 12,13-dibutyrate (PDBu), and could be blocked by the PKC inhibitors sphingosine or H-7. The stoichiometry of the phosphorylation was approximately 2 mol of [32P]ATP/mol of receptor, suggesting the involvement at least two of three putative PKC sites within the 5-HT1A receptor. The close concordance between the PKC-induced desensitization and phosphorylation suggests a potential causative link between these two effects of PKC on the human 5-HT1A receptor.  相似文献   

5.
Incubation of human promyelocytic leukemia (HL-60) cells with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a protein kinase C-activating phorbol ester, caused a marked increase in c-fos mRNA in a dose-dependent manner. Phorbol-12,13-dibutyrate and 1-oleoyl-2-acetyl-glycerol, other protein kinase C-activating agents, were also active in this capacity. 4 alpha-Phorbol-12,13-didecanoate, known to be inactive for protein kinase C, was ineffective. 8-Bromo-cyclic AMP (8-Br-cAMP) also increased c-fos mRNA in a dose-dependent manner. This action of 8-Br-cAMP was mimicked by prostaglandin E2, which is known to raise the cyclic AMP level in HL-60 cells. c-fos mRNA increased within 15 min and reached a maximal level 45 min after the stimulation of the cells by TPA or 8-Br-cAMP. The simultaneous stimulation of the cells by TPA and 8-Br-cAMP at the respective doses giving maximal elevation of c-fos mRNA increased this mRNA in an additive manner. These results suggest that in HL-60 cells expression of the c-fos gene is regulated independently by two different intracellular messenger systems, protein kinase C and cyclic AMP.  相似文献   

6.
The phosphorylation of the invariant chains associated with the human TCR has been investigated after the stimulation of T lymphocytes with CD2 mAb T11(2) and T11(3), PHA, or phorbol 12,13-dibutyrate. As described previously, stimulation of T cells with either CD2 mAb or phorbol 12,13-dibutyrate resulted in the phosphorylation of the CD3 gamma-chain. The combination of T11(2) and T11(3) mAb also induced phosphorylation of the TCR zeta-chain. The phosphorylated zeta-polypeptide of CD2-activated cells was immunoprecipitated with antiphosphotyrosine antibodies and migrated to a 21- to 23-kDa position during SDS/PAGE. These results indicate that stimulation of human T cells via the CD2 Ag with the T11(2) and T11(3) mAb activates not only protein kinase C but also tyrosine kinase(s), resulting in the phosphorylation of the CD3 gamma-chain and the tyrosine phosphorylation of the zeta-chain, respectively.  相似文献   

7.
The beta-adrenoceptor blocker propranolol stimulated testosterone secretion by rat testicular interstitial cells (Leydig cell-enriched preparation) in vitro at concentrations ranging from 10(-5) M to 10(-4) M. Treatment of these cells with H7 (20 microM), an inhibitor of protein kinase C, reduced the stimulatory effect of L-propranolol on testosterone secretion by about 5-fold. At concentrations ranging from 31.25 microM to 1000 microM, L-propranolol reduced [3H]phorbol 12,13-dibutyrate binding (IC50 = 75 microM) to rat testicular interstitial cells. At similar concentrations, L-propranolol displaced the binding of [3H]phorbol 12,13-dibutyrate to the homogenate of these cells by only 5%. These findings suggest that the effect of L-propranolol on [3H]phorbol 12,13-dibutyrate binding could be indirect, possibly by increasing the concentration of a chemical mediator interacting with the regulatory domain of protein kinase C. At even lower concentrations (10(-9) M to 10(-7) M), propranolol added directly to the reaction mixture with protein kinase C partially purified from rat testicular interstitial cells increases the phosphorylation of histone. This phosphorylation was comparable to that obtained with (25 microg/ml) phosphatidylserine. The D- and L-stereoisomers of propranolol were equally active. A complete reversal of this propranolol effect on histone phosphorylation was achieved with (20 microM) H-7. In the absence of Ca2+, propranolol was not able to phosphorylate the histone. Taken together, these results suggest that protein kinase C could be the putative kinase involved in this reaction and that its activation by propranolol may be due to interaction of the drug with the regulatory domain of the enzyme at a site differing from the site of interaction with phorbol 12,13-dibutyrate. The ability of propranolol to activate the putative protein kinase C could be related to its stimulatory effect on testosterone secretion by Leydig cells.  相似文献   

8.
Intermediate filaments have been proposed, via phosphorylation by protein kinase C, to be involved in sustained contraction of smooth muscle. We examined the effect of angiotensin II on the phosphorylation of the intermediate filament protein, vimentin, in cultured rat aortic vascular smooth muscle cells. Angiotensin II induced phosphorylation of a Triton X-100- and high salt-insoluble protein with a molecular weight of 58,000. This protein was identified as vimentin based on its specific interaction with anti-vimentin antibody as detected by immunoblot analysis. Angiotensin II-induced phosphorylation of vimentin was time- and dose-dependent. Phosphorylation was detectable at 15 s, peaked at 2 min after angiotensin II stimulation, and gradually declined to a new plateau which was sustained for at least 30 min. The threshold, half-maximal and maximal concentrations of angiotensin II that stimulated vimentin phosphorylation were 0.01, 0.1, and 10 nM, respectively. The Ca2+ ionophore, ionomycin, stimulated vimentin phosphorylation to the same extent as angiotensin II, whereas the protein kinase C-activating phorbol ester, phorbol 12-myristate 13-acetate, had only marginal effects on this reaction. Pretreatment of the cells with [ethylene-bis(oxyethylenenitrilo)]tetraacetic acid attenuated angiotensin II- and ionomycin-induced vimentin phosphorylation to the same extent. Down-regulation of protein kinase C induced by prolonged treatment of the cells with phorbol 12,13-dibutyrate did not inhibit angiotensin II-induced vimentin phosphorylation. These results indicate that angiotensin II stimulates vimentin phosphorylation via a Ca2+-dependent, protein kinase C-independent mechanism in vascular smooth muscle cells and suggest that cytoskeletal proteins are major targets for angiotensin II-induced phosphorylation events.  相似文献   

9.
Biochemical characterization of rat brain protein kinase C isozymes   总被引:18,自引:0,他引:18  
Biochemical characteristics of three rat brain protein kinase C isozymes, types I, II, and III, were compared with respect to their protein kinase and phorbol ester-binding activities. All three isozymes appeared to be alike in their phorbol ester-binding activities as evidenced by their similar Kd for phorbol 12,13-dibutyrate and requirements for Ca2+ and phospholipids. However, differences with respect to the effector-mediated stimulation of protein kinase activity were detectable among these isozymes. The type I enzyme could be stimulated by cardiolipin to a greater extent than those of the type II and III enzymes. In the presence of cardiolipin, the concentrations of dioleoylglycerol or phorbol 12,13-dibutyrate required for half-maximal activation (A1/2) of the type I enzyme were nearly an order of magnitude lower than those for the type II and III enzymes. In the presence of phosphatidylserine, differences in the A1/2 of dioleoylglycerol and phorbol 12,13-dibutyrate for the three isozymes of protein kinase C were less significant than those measured in the presence of cardiolipin. Nevertheless, the A1/2 of these two activators for the type I enzyme were lower than those for the type II and III enzymes. At high levels of phosphatidylserine (greater than 15 mol %), binding of phorbol 12,13-dibutyrate to the type I enzyme evoked a corresponding stimulation of the kinase activity, whereas binding of this phorbol ester to the type II and III enzymes produced a lesser degree of kinase stimulation. For all three isozymes, the concentrations of phosphatidylserine required for half-maximum [3H]phorbol 12,13-dibutyrate binding were almost an order of magnitude less than those for kinase stimulation. Consequently, neither isozyme exhibited a significant kinase activity at lower levels of phosphatidylserine (less than 5 mol %) and phorbol 12,13-dibutyrate (50 nM), a condition sufficient to promote near maximal phorbol ester binding. In addition to their different responses to the various activators, the three protein kinase C isozymes also have different Km values for protein substrates. The type I enzyme appeared to have lower Km values for histone IIIS, myelin basic protein, poly(lysine, serine) (3:1) polymer, and protamine than those for the type II and III enzymes. These results documented that the three protein kinase C isozymes were distinguishable in their biochemical properties. In particular, the type I enzyme, which is a brain-specific isozyme, is distinct from the type II and III enzymes, both have a widespread distribution among different tissues.  相似文献   

10.
Previously, D2 dopamine receptors (D2 DARs) have been shown to undergo G-protein-coupled receptor kinase phosphorylation in an agonist-specific fashion. We have now investigated the ability of the second messenger-activated protein kinases, protein kinase A (PKA) and protein kinase C (PKC), to mediate phosphorylation and desensitization of the D2 DAR. HEK293T cells were transiently transfected with the D2 DAR and then treated with intracellular activators and inhibitors of PKA or PKC. Treatment with agents that increase cAMP, and activate PKA, had no effect on the phosphorylation state of the D2 DAR, suggesting that PKA does not phosphorylate the D2 DAR in HEK293T cells. In contrast, cellular treatment with phorbol 12-myristate 13-acetate (PMA), a PKC activator, resulted in an approximately 3-fold increase in D2 DAR phosphorylation. The phosphorylation was specific for PKC as the PMA effect was mimicked by phorbol 12,13-dibutyrate, but not by 4alpha-phorbol 12,13-didecanoate, active and inactive, phorbol diesters, respectively. The PMA-mediated D2 DAR phosphorylation was completely blocked by co-treatment with the PKC inhibitor, bisindolylmaleimide II, and augmented by co-transfection with PKCbetaI. In contrast, PKC inhibition had no effect on agonist-promoted phosphorylation, suggesting that PKC is not involved in this response. PKC phosphorylation of the D2 DAR was found to promote receptor desensitization as reflected by a decrease in agonist potency for inhibiting cAMP accumulation. Most interestingly, PKC phosphorylation also promoted internalization of the D2 DAR through a beta-arrestin- and dynamin-dependent pathway, a response not usually associated with PKC phosphorylation of G-protein-coupled receptors. Site-directed mutagenesis experiments resulted in the identification of two domains of PKC phosphorylation sites within the third intracellular loop of the receptor. Both of these domains are involved in regulating sequestration of the D2 DAR, whereas only one domain is involved in receptor desensitization. These results indicate that PKC can mediate phosphorylation of the D2 DAR, resulting in both functional desensitization and receptor internalization.  相似文献   

11.
We have used digitonin permeabilization to study the mechanism of bombesin-induced activation of protein kinase C in Swiss 3T3 cells. Protein kinase C-mediated phosphorylations in permeabilized cells were identified using phorbol esters and diacylglycerols. Addition of phorbol 12,13-dibutyrate (PDBu) in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid time- and dose-dependent increase in the phosphorylation of an Mr 80,000 cellular protein (maximum stimulation = 12.6 +/- 1.6-fold after 1 min, EC50 = 27 nM). 1-oleoyl-2-acetylglycerol substituted for PDBu in stimulating the phosphorylation of Mr 80,000 protein (EC50 = 13 microM). Bombesin also caused a striking increase in the phosphorylation of Mr 80,000 protein with a time course similar to that observed with PDBu. This phosphorylation was mimicked by mammalian bombesin-like peptides and blocked by the bombesin antagonists [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P and [Leu13 psi (CH2NH)Leu14]bombesin. Down-regulation of protein kinase C in intact cells by prolonged exposure to PDBu prevented Mr 80,000 protein phosphorylation upon subsequent bombesin addition in digitonin-permeabilized cells. Comigration on one- and two-dimensional gel electrophoresis and phosphopeptide mapping confirmed that the Mr 80,000 protein phosphorylated in permeabilized cells was indistinguishable from the Mr 80,000 protein which is the major protein kinase C substrate in intact cells. The GDP analogue guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) caused a 70% inhibition of the bombesin-induced phosphorylation of Mr 80,000 protein but had no effect on the phosphorylation induced by PDBu. Bombesin stimulated Mr 80,000 protein phosphorylation in permeabilized cells in a dose-dependent manner (EC50 = 4 nM), and GDP beta S shifted the bombesin dose response curve to higher bombesin concentrations (EC50 = 14 nM). These results demonstrate for the first time a growth factor receptor-mediated activation of protein kinase C in permeabilized cells and provide functional evidence for the involvement of a G protein in the transmembrane signaling pathway that mediates the stimulation of protein kinase C by bombesin in Swiss 3T3 cells.  相似文献   

12.
The effect of phorbol esters on the transport of amino acids has been evaluated in cultured human fibroblasts. The activity of the Na(+)-dependent system XAG- for anionic amino acids is selectively and markedly stimulated by phorbol esters. The effect is maximal within 15 min; it is attributable to an increase in transport maximum (Vmax) and not prevented by inhibitors of protein synthesis. The half-maximal stimulation is observed at concentrations of phorbol 12,13-dibutyrate lower than 100 nM. Prolonged incubations in the presence of 1 microM phorbol 12,13-dibutyrate lower the binding of the ligand to its receptor with a loss of the stimulatory effect on transport. The results presented indicate that the stimulation of amino acid transport through system XAG- by phorbol esters requires the activation of protein kinase C.  相似文献   

13.
Previous studies have shown that insulin-like growth factor-I (IGF-I) enhances secretagogue-stimulated Ca2+ uptake and catecholamine release in bovine chromaffin cells. This report describes the effect of IGF-I on the activity of tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2), the major regulatory enzyme in the pathway of catecholamine biosynthesis. Tyrosine hydroxylase activity was assayed by measuring 3,4-dihydroxyphenylalanine (Dopa) accumulation in the presence of brocresine, an inhibitor of Dopa decarboxylase. Chromaffin cells cultured in serum-free medium produced approximately 40% less Dopa when stimulated by 55 mM K+ than did cells that had been cultured in the presence of serum. Incubation of cells for 3 days in serum-free medium containing 10 nM IGF-I restored high K(+)-stimulated Dopa accumulation to a level comparable to that seen in cells cultured continuously in serum-containing medium. In eight experiments, IGF-I increased high K(+)-stimulated Dopa accumulation (expressed as picomoles per minute per milligram of protein) by 96 +/- 13%. IGF-I increased the protein content of chromaffin cells by approximately 30%; consequently, its effect on tyrosine hydroxylase activity was even greater when Dopa synthesis was expressed as picomoles per minute per 10(7) cells. IGF-I also enhanced the rate of Dopa accumulation in cells stimulated by dimethylphenylpiperazinium, 8-bromo-cyclic AMP, phorbol 12,13-dibutyrate, or Ba2+. The effect of IGF-I on high K(+)-stimulated tyrosine hydroxylase activity was measurable when enzyme activity was assayed in vitro, suggesting that this effect was due to a stable modification of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. 32P-Labeled proteins from the superior cervical ganglion of the rat were separated by two-dimensional gel electrophoresis and visualized by autoradiography. 2. The most heavily labeled phosphoprotein in the ganglion had a relative molecular weight of 83,000 and a pI of 4.5. Phosphorylation of this protein was increased by phorbol 12,13-dibutyrate, an activator of the Ca2+/phospholipid-dependent protein kinase, protein kinase C. This protein appears to be similar or identical to a specific protein kinase C substrate that has been described in other tissues (Blackshear, P. J., et al., J. Biol. Chem. 261:1459-1469, 1986). 3. Phosphorylation of this protein was also increased by treatment of the ganglion with phospholipase C (Bacillus cereus) but was not increased by 8-bromo-cyclic AMP or by nicotinic agonists. Vasopressin increased the hydrolysis of inositol-containing phospholipids in the ganglion and also increased the labeling of the 83,000 Mr protein. Thus, vasopressin appears to activate protein kinase C in the ganglion. 4. Muscarine, which also increased phospholipid metabolism in the ganglion, did not increase the phosphorylation of the 83,000 Mr protein. Muscarine and vasopressin stimulate phospholipid metabolism in different structures within the ganglion (Horwitz, J., et al., J. Pharmacol. Exp. Ther. 237:312-317, 1986). Muscarine may increase phospholipid metabolism in structures that do not contain significant amounts of the 83,000 Mr protein.  相似文献   

15.
Endothelin, a novel peptide isolated from the conditioned medium of endothelial cells, causes a slow, sustained contraction of vascular smooth muscle, but its mechanism of action remains unclear. To determine whether the diacylglycerol/protein kinase C signalling pathway is stimulated by endothelin, we exposed cultured rat aortic smooth muscle cells to endothelin and measured diacylglycerol accumulation and protein kinase C-dependent protein phosphorylation. Endothelin stimulated a dose-dependent, biphasic increase in diacylglycerol, which was sustained for at least 20 min. This peptide also induced a prolonged phosphorylation of an acidic protein with a molecular weight of 76,000, which was detectable by 30 s and sustained for at least 20 min. This phosphorylation could be mimicked by phorbol 12-myristate 13-acetate, but not by ionomycin, and was markedly reduced when protein kinase C was down-regulated by a 24-h pretreatment with phorbol 12,13-dibutyrate. These results suggest that endothelin causes a robust stimulation of the diacylglycerol/protein kinase C pathway in cultured vascular smooth muscle cells, and that this mechanism may contribute importantly to the physiologic events stimulated by endothelin in intact blood vessels, including slow, tonic contraction and Ca2+ influx.  相似文献   

16.
The role of proctolin has been further investigated in the locust (Locusta migratoria) mandibular closer muscles. Radioactive calcium uptake measurements were made using protease-dissociated muscle cells. Both the phorbol ester, phorbol-12,13-dibutyrate, and proctolin produce tonic contractions which are associated with the influx of extracellular calcium. The thresholds for proctolin and the phorbol ester to contract the muscle were 1-10 nM and 10-100nM, respectively, while their respective thresholds for evoking measurable calcium influx into the muscle cells were 0.1-1 nM for proctolin, and 0.1-1 pM for phorbol-12,13-dibutyrate. The effect of phorbol-12,13-dibutyrate is blocked by a number of protein kinase inhibitors (at a concentration of 0.1 mM), suggesting that an activation of a protein kinase can lead to calcium influx. These inhibitors, however, do not block the effect of proctolin, indicating that these two compounds work through different pathways, possibly converging on the same final target. In light of this finding, a number of other compounds have been tested to try to ascertain how proctolin mediates an increased calcium influx.  相似文献   

17.
Guanine nucleotides and pertussis toxin were used to test for the involvement of a guanine nucleotide binding protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C activity in Swiss 3T3 cells. Addition of vasopressin in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid increase (8 +/- 1-fold after 1 min) in the phosphorylation of an Mr = 80,000 cellular protein (80K), a specific marker for protein kinase C activation. This phosphorylation was selectively blocked by the V1 receptor antagonist Pmp1-0-Me-Tyr2 [Arg8] vasopressin, indicating that the effect was mediated through the vasopressin V1 receptor. Down regulation of protein kinase C by prior prolonged pretreatment of intact cells with phorbol 12,13-dibutyrate (PBt2) blocked the ability of vasopressin to stimulate the phosphorylation of 80K in digitonin-permeabilized cells. Addition of a submaximal concentration of vasopressin together with the GTP analogue GTP-gamma-S caused a synergistic stimulation of 80K phosphorylation. The GDP analogue GDP-beta-S caused a 50% inhibition of the phosphorylation of 80K induced by a saturating concentration of vasopressin and shifted the vasopressin dose-response curve to the right. GDP-beta-S had no effect on the dose-response for the stimulation of 80K phosphorylation induced by PBt2. Prior incubation of intact quiescent cultures of Swiss 3T3 cells with pertussis toxin did not impair either vasopressin-induced increase in cytosolic [Ca2+] or activation of protein kinase C. These findings provide functional evidence for the involvement of a pertussis toxin-insesitive G protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C in Swiss 3T3 cells.  相似文献   

18.
A number of different protein kinases phosphorylate purified heavy chains or the 20-kDa light chain of smooth muscle myosin. The physiological significance of these phosphorylation reactions has been examined in intact smooth muscle. Myosin heavy chain was slightly phosphorylated (0.08 mol of phosphate/mol) under control conditions in bovine tracheal tissue. Treatment with carbachol, isoproterenol, or phorbol 12,13-dibutyrate resulted in no significant change. In contrast, heavy chain was phosphorylated to 0.30 mol of phosphate/mol of heavy chain in tracheal smooth muscle cells in culture. This value increased significantly with ionomycin treatment. In control tissues, 9% of the light chain was monophosphorylated with 32P in the serine site phosphorylated by myosin light chain kinase. Carbachol (0.1 microM) alone resulted in contraction and 42% monophosphorylated light chain with 32P only in the serine site phosphorylated by myosin light chain kinase. Similarly, stimulation with histamine, 5-hydroxytryptamine, or KCl resulted in 32P incorporation into only the myosin light chain kinase serine site. Phorbol 12,13-dibutyrate (1 microM) alone resulted in 22% monophosphorylated light chain. However, only 25% of the 32P was in the myosin light chain kinase serine site, whereas 75% was in a serine site phosphorylated by protein kinase C. Phorbol 12,13-dibutyrate plus carbachol resulted in 27% monophosphorylated light chain; 75% of the 32P was in the myosin light chain kinase serine site, with the remainder in the protein kinase C serine site. These results indicate that phorbol esters act to increase phosphorylation of myosin light chain by protein kinase C. However, receptor-mediated stimulation or depolarization leading to tracheal smooth muscle contraction results in phosphorylation of myosin light chain by myosin light chain kinase alone.  相似文献   

19.
A tumor-promoting phorbol ester, [3H]phorbol-12,13-dibutyrate, may bind to a homogeneous preparation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) in the simultaneous presence of Ca2+ and phospholipid. This tumor promoter does not bind simply to phospholipid nor to the enzyme per se irrespective of the presence and absence of Ca2+. All four components mentioned above appear to be bound together, and the quaternary complex thus produced is enzymatically fully active for protein phosphorylation. Phosphatidylserine is most effective. Various other phorbol derivatives which are active in tumor promotion compete with [3H]phorbol-12,13-dibutyrate for the binding, and an apparent dissociation binding constant of the tumor promoter is 8 nM. This value is identical with the activation constant for protein kinase C and remarkably similar to the dissociation binding constant that is described for intact cell surface receptors. The binding of the phorbol ester is prevented specifically by the addition of diacylglycerol, which serves as activator of protein kinase C under physiological conditions. Scatchard analysis suggests that one molecule of the tumor promoter may bind to every molecule of protein kinase C in the presence of Ca2+ and excess phospholipid. It is suggestive that protein kinase C is a phorbol ester-receptive protein, and the results presented seem to provide clues for clarifying the mechanism of tumor promotion.  相似文献   

20.
The phorbol esters, phorbol-12,13-dibutyrate, phorbol-12-myristate-13-acetate, phorbol-12,13-didecanoate, and phorbol-12,13-diacetate, as well as mezerin at concentrations as low as 10 nM produce a spastic paralysis of the schistosome musculature. The action of these protein kinase-C activators is dependent on the sites of esterification and is stereo-specific since phorbol-13,20-diacetate, phorbol-12,13,20-triacetate, 20-oxo, 20-deoxy-beta-phorbol-12,13-dibutyrate, alpha-phorbol-12,13-didecanoate, and alpha-phorbol are inactive. A phospholipid and phorbol ester-dependent protein kinase is identified. This kinase is stimulated by all of the phorbol esters that increase muscle tone but is not stimulated by phorbol esters that do not affect muscle tone. A high affinity, stereo-specific phorbol ester receptor is identified. Dose-response curves of phorbol-12,13-dibutyrate-induced muscle tension and -stimulated kinase activity and receptor binding indicate that these responses are mediated by the same system. These results indicate that protein kinase-C-like enzyme may play an important role in modulating activity of the schistosome musculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号