首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our goal is to construct a robust physical map for maize (Zea mays) comprehensively integrated with the genetic map. We have used a two-dimensional 24 x 24 overgo pooling strategy to anchor maize expressed sequence tagged (EST) unigenes to 165,888 bacterial artificial chromosomes (BACs) on high-density filters. A set of 70,716 public maize ESTs seeded derivation of 10,723 EST unigene assemblies. From these assemblies, 10,642 overgo sequences of 40 bp were applied as hybridization probes. BAC addresses were obtained for 9,371 overgo probes, representing an 88% success rate. More than 96% of the successful overgo probes identified two or more BACs, while 5% identified more than 50 BACs. The majority of BACs identified (79%) were hybridized with one or two overgos. A small number of BACs hybridized with eight or more overgos, suggesting that these BACs must be gene rich. Approximately 5,670 overgos identified BACs assembled within one contig, indicating that these probes are highly locus specific. A total of 1,795 megabases (Mb; 87%) of the total 2,050 Mb in BAC contigs were associated with one or more overgos, which are serving as sequence-tagged sites for single nucleotide polymorphism development. Overgo density ranged from less than one overgo per megabase to greater than 20 overgos per megabase. The majority of contigs (52%) hit by overgos contained three to nine overgos per megabase. Analysis of approximately 1,022 Mb of genetically anchored BAC contigs indicates that 9,003 of the total 13,900 overgo-contig sites are genetically anchored. Our results indicate overgos are a powerful approach for generating gene-specific hybridization probes that are facilitating the assembly of an integrated genetic and physical map for maize.  相似文献   

2.
The mapping strategy for the bovine genome described in this paper uses large insert clones as a tool for physical mapping and as a source of highly polymorphic microsatellites for genetic typing, and was one objective of the BovMap Project funded by the European Union (UE). Eight-three cosmid and phage clones were characterized and used to physically anchor the linkage groups defining all the bovine autosomes and the X Chromosome (Chr). By combining physical and genetic mapping, clones described in this paper have led to the identification of the linkage groups corresponding to Chr 9, 12, 16, and 25. In addition, anchored loci from this study were used to orient the linkage groups corresponding to Chr 3, 7, 8, 9, 13, 16, 18, 19, and 28 as identified in previously published maps. Comparison of the estimated size of the physical and linkage maps suggests that the genetic length of the bovine genome may be around 4000 cM. Received: 1 July 1996 / Accepted: 13 September 1996  相似文献   

3.
Ustilago maydis, a basidiomycete, is a model organism among phytopathogenic fungi. A physical map of U. maydis strain 521 was developed from bacterial artificial chromosome (BAC) clones. BAC fingerprints used polyacrylamide gel electrophoresis to separate restriction fragments. Fragments were labeled at the HindIII site and co-digested with HaeIII to reduce fragments to 50-750 bp. Contiguous overlapping sets of clones (contigs) were assembled at nine stringencies (from P < or = 1 x 10(-6) to 1 x 10(-24)). Each assembly nucleated contigs with different percentages of bands overlapping between clones (from 20% to 97%). The number of clones per contig decreased linearly from 41 to 12 from P < or = 1 x 10(-7) to 1 x 10 (-12). The number of separate contigs increased from 56 to 150 over the same range. A hybridization-based physical map of the same BAC clones was compared with the fingerprint contigs built at P < or = 1 x 10(-7). The two methods provided consistent physical maps that were largely validated by genome sequence. The combined hybridization and fingerprint physical map provided a minimum tile path composed of 258 BAC clones (18-20 Mbp) distributed among 28 merged contigs. The genome of U. maydis was estimated to be 20.5 Mbp by pulsed-field gel electrophoresis and 24 Mbp by BAC fingerprints. There were 23 separate chromosomes inferred by both pulsed-field gel electrophoresis and fingerprint contigs. Only 11 of the tile path BAC clones contained recognizable centromere, telomere, and subtelomere repeats (high-copy DNA), suggesting that repeats caused some false merges. There were 247 tile path BAC clones that encompassed about 17.5 Mbp of low-copy DNA sequence. BAC clones are available for repeat and unique gene cluster analysis including tDNA-mediated transformation. Program FingerPrint Contigs maps aligned with each chromosome can be viewed at http://www.siu.edu/~meksem/ustilago_maydis/.  相似文献   

4.
The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F(1) individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp. On the basis of contigs containing two or more genetically mapped markers, region-dependent estimations of physical and recombinational distances are presented. The markers used in this study include 118 SSRs common to an integrated map derived from five segregating populations of V. vinifera. The positions of these SSR markers in the two maps are conserved across all Vitis linkage groups. The addition of SNP-based markers introduces polymorphisms that are easy to database, are useful for evolutionary studies, and significantly increase the density of the map. The map provides the most comprehensive view of the Vitis genome reported to date and will be relevant for future studies on structural and functional genomics and genetic improvement.  相似文献   

5.
Atopy describes a syndrome of immunoglobulin E (IgE)-mediated allergy that underlies asthma and infantile eczema. We have previously identified a locus on chromosome 13q14 that is linked to atopy and to the total serum immunoglobulin A concentration. We have therefore made a saturation genetic map of the region by typing 59 polymorphic microsatellite loci on chromosome 13q. Multipoint linkage analysis identified a 1-LOD support unit for the location of the atopy locus with a 7.5-cM region flanked by the loci D13S328 and D13S1269. The peak of linkage was at locus D13S161 with a nonparametric -log of P score of approximately 4.5. Parent of origin effects were present, with linkage primarily observed to paternally derived alleles. The genetic map of this region provides a basis for the effective identification of the chromosome 13 atopy gene.  相似文献   

6.
Bacterial artificial chromosome (BAC) clones are effective mapping and sequencing reagents for use with a wide variety of small and large genomes. This report describes research aimed at determining the genome structure of Ochrobactrum anthropi, an opportunistic human pathogen that has potential applications in biodegradation of hazardous organic compounds. A BAC library for O. anthropi was constructed that provides a 70-fold genome coverage based on an estimated genome size of 4.8 Mb. The library contains 3072 clones with an average insert size of 112 kb. High-density colony filters of the library were made, and a physical map of the genome was constructed using a hybridization without replacement strategy. In addition, 1536 BAC clones were fingerprinted with HindIII and analyzed using IMAGE and Fingerprint Contig software (FPC, Sanger Centre, U.K.). The FPC results supported the hybridization data, resulting in the formation of two major contigs representing the two major replicons of the O. anthropi genome. After determining a reduced tiling path, 138 BAC ends from the reduced tile were sequenced for a preliminary gene survey. A search of the public databases with the BLASTX algorithm resulted in 77 strong hits (E-value < 0.001), of which 89% showed similarity to a wide variety of prokaryotic genes. These results provide a contig-based physical map to assist the cloning of important genomic regions and the potential sequencing of the O. anthropi genome.  相似文献   

7.
Improving grain yield is the ultimate goal of the maize-breeding programs. In this study, analyses of conditional and unconditional quantitative trait locus (QTL) and epistatic interactions were used to elucidate the genetic architecture of yield and its related traits. A total of 15 traits of a recombinant inbred line population, including yield per plant (YPP), seven ear-related traits, and seven kernel-related traits, were measured in six different environments. Based on the genetic linkage map constructed using 2091 bins as markers, 56 main-effect QTLs for these traits were identified. These QTLs were distributed across eight genomic regions (bin 1.06, bin 4.02/4.05/4.08, bin 5.04, bin 7.04, bin 8.08, and bin 9.04), within the marker intervals of 85.45–6260.66 kb, and the phenotypic variance explained ranging from 5.69 to 11.56 %. One gene (GRMZM2G168229) encoding SBP-box domain protein was located in the small interval of qKRN4-3 and may be involved in patterning of kernel row number. Seventeen conditional QTLs identified for YPP were conditioned on its related traits and explained 6.18–23.15 % of the phenotypic variance. Conditional mapping analysis revealed that qYPP4-1, qYPP6-1, and qYPP8-1 are partially influenced by YPP-related traits at the individual QTL level. Digenic epistatic analysis identified 12 digenic interactions involving 22 loci across the whole genome. In addition, conditional digenic epistatic analysis identified 14 digenic interactions involving 21 loci. This study provides valuable information for understanding the genetic relationship between YPP and related traits and constitutes the first step toward the cloning of the relevant genes.  相似文献   

8.
A genetic and physical map of bovine chromosome 3   总被引:2,自引:0,他引:2  
This paper reports a map of nine polymorphic microsatellite markers previously assigned to bovine chromosome 3 (BTA3) by somatic cell genetics. The linkage group covers 101 cM on the chromosome with an average intermarker distance of 13-9 cM. One marker (INRA200) was isolated from a peak of flow sorted chromosomes 2 and 3. Another marker (INRA197) was derived from a cosmid. The localization of the cosmid by in situ hybridization enabled the orientation of the linkage group on BTA3. Markers were relatively evenly spaced and consequently can be used to complement other mapping data about this chromosome. This establishes a framework of polymorphic markers that can be used to search for quantitative trait loci (QTL).  相似文献   

9.
To examine the relationship between genetic and physical chromosome maps, we constructed a diploid strain of the yeast Saccharomyces cerevisiae heterozygous for 12 restriction site mutations within a 23-kilobase (5-centimorgan) interval of chromosome III. Crossovers were not uniformly distributed along the chromosome, one interval containing significantly more and one interval significantly fewer crossovers than expected. One-third of these crossovers occurred within 6 kilobases of the centromere. Approximately half of the exchanges were associated with gene conversion events. The minimum length of gene conversion tracts varied from 4 base pairs to more than 12 kilobases, and these tracts were nonuniformly distributed along the chromosome. We conclude that the chromosomal sequence or structure has a dramatic effect on meiotic recombination.  相似文献   

10.
11.
Selection of chromosomal sublibraries from total human genomic libraries is critical for chromosome-based physical mapping approaches. We have previously reported a method of screening total human genomic library using flow sorted chromosomal DNA as a hybridization probe and selection of a human chromosome 22-enriched sublibrary from a total human bacterial artificial chromosome (BAC) library (Nucleic Acids Res 1995; 23: 1838–1839). We describe here further details of the method of construction as well as characterization of the chromosome 22-enriched sublibrary thus constructed. Nearly 40% of the BAC clones that have been mapped by fluorescence in situ hybridization (FISH) analysis were localized to chromosome 22. By screening the sublibrary using chromosome 22-specific hybridization probes, we estimated that the sublibrary represents at least 2.5 × coverage of chromosome 22. This is in good agreement with the results from FISH mapping experiments. FISH map data also indicate that chromosome 22-specific BACs in the sublibrary represent all the subregions of chromosome 22.  相似文献   

12.
We used structural genomic resources for Sorghum bicolor (L.) Moench to target and develop multiple molecular cytogenetic probes that would provide extensive coverage for a specific chromosome of sorghum. Bacterial artificial chromosome (BAC) clones containing molecular markers mapped across sorghum linkage group A were labeled as probes for fluorescence in situ hybridization (FISH). Signals from single-, dual-, and multiprobe BAC-FISH to spreads of mitotic chromosomes and pachytene bivalents were associated with the largest sorghum chromosome, which bears the nucleolus organizing region (NOR). The order of individual BAC-FISH loci along the chromosome was fully concordant to that of marker loci along the linkage map. In addition, the order of several tightly linked molecular markers was clarified by FISH analysis. The FISH results indicate that markers from the linkage map positions 0.0-81.8 cM reside in the short arm of chromosome 1 whereas markers from 81.8-242.9 cM are located in the long arm of chromosome 1. The centromere and NOR were located in a large heterochromatic region that spans approximately 60% of chromosome 1. In contrast, this region represents only 0.7% of the total genetic map distance of this chromosome. Variation in recombination frequency among euchromatic chromosomal regions also was apparent. The integrated data underscore the value of cytological data, because minor errors and uncertainties in linkage maps can involve huge physical regions. The successful development of multiprobe FISH cocktails suggests that it is feasible to develop chromosome-specific "paints" from genomic resources rather than flow sorting or microdissection and that when applied to pachytene chromatin, such cocktails provide an especially powerful framework for mapping. Such a molecular cytogenetic infrastructure would be inherently cross-linked with other genomic tools and thereby establish a cytogenomics system with extensive utility in development and application of genomic resources, cloning, transgene localization, development of plant "chromonomics," germplasm introgression, and marker-assisted breeding. In combination with previously reported work, the results indicate that a sorghum cytogenomics system would be partially applicable to other gramineous genera.  相似文献   

13.
To understand the evolution of developmental processes, nonmodel organisms in the nematodes, insects, and vertebrates are compared with established model systems. Often, these comparisons suffer from the inability to apply sophisticated technologies to these nonmodel species. In the nematode Pristionchus pacificus, cellular and genetic analyses are used to compare vulva development to that of Caenorhabditis elegans. However, substantial changes in gene function between P. pacificus and C. elegans limit the use of candidate gene approaches in studying P. pacificus mutations. To facilitate map-based cloning of mutations in P. pacificus, we constructed a BAC-based genetic linkage map. A BAC library of 13,440 clones was generated and completely end sequenced. By comparing BAC end and EST sequences between the "wild-type" strain P. pacificus var. California and the polymorphic strain P. pacificus var. Washington, 133 single-stranded conformational polymorphisms were identified. These markers were tested on a meiotic mapping panel of 46 randomly picked F(2) animals after a cross of the two strains, providing the first genetic linkage map of P. pacificus. A mapping strategy using two selected markers per chromosome was devised and the efficiency of this approach was illustrated by the mapping of the Ppa-unc-1/Twitchin gene.  相似文献   

14.
Two bacterial artificial chromosome (BAC) libraries were constructed using nuclear DNA from posterior silkglands of the silkworm (Bombyx mori) strains p50 and C108. The libraries contain a total of 36,864 clones, or approximately 9 genome equivalents. The average insert sizes in the libraries were 134.5?kb and 120.8?kb, respectively. PCR-based screening was performed on the p50 library using probes for 34 sequence-tagged sites (STSs). Between 3 and 11 (6.1 hits on average) clones were isolated with each STS, in good agreement with the library size, 5.8 genome equivalents. The previously reported close linkage between the Bombyx homologs of the invected (Bm in) and engrailed (Bm en) genes was confirmed by construction of a BAC contig that contained both. Moreover, screening revealed novel information about the chromosomal organization of the sericin-1 and DH-PBAN genes, which were localized within a 22-kb interval and are divergently oriented. These results show that it is possible to construct contigs and analyze chromosome organization using these libraries.  相似文献   

15.
16.
A direct hybridization protocol is described for screening cosmid and yeast artificial chromosome libraries with pools of Alu-PCR products from somatic cell or irradiation hybrids. This method eliminates purification, cloning and analysis of each individual Alu-PCR product before library screening. A series of human X chromosome irradiation hybrids were mapped by this method, using a cosmid reference library for comparisons between overlapping hybrids to identify interesting clones for further analysis.  相似文献   

17.
A combined physical and genetic map of theCorynebacterium glutamicum ATCC 13032 chromosome was constructed using pulsed-field gel electrophoresis (PFGE) and hybridizations with cloned gene probes. Total genomic DNA was digested with the meganucleasesSwaI (5′-ATTTAAAT-3′),PacI (5′-TTAATTAA-3′), andPmeI (5′-GTTTAAAC-3′) yielding 26, 27, and 23 fragments, respectively. The chromosomal restriction fragments were then separated by PFGE. By summing up the lengths of the fragments generated with each of the three enzymes, a genome size of 3082 +/- 20 kb was determined. To identify adjacentSwaI fragments, a genomic cosmid library ofC. glutamicum was screened for chromosomal inserts containingSwaI sites. Southern blots of the PFGE gels were hybridized with these linking clones to connect theSwaI fragments in their natural order. By this method, about 90% of the genome could be ordered into three contigs. Two of the remaining gaps were closed by cross-hybridization of blottedSwaI digests using as probesPacI andPmeI fragments isolated from PFGE gels. The last gap in the chromosomal map was closed by hybridization experiments using partialSwaI digestions, thereby proving the circularity of the chromosome. By hybridization of gene probes toSwaI fragments separated by PFGE about 30 genes, including rRNA operons, IS element and transposon insertions were localized on the physical map.  相似文献   

18.
The parasitic nematode, Brugia malayi, causes lymphatic filariasis in humans, which in severe cases leads to the condition known as elephantiasis. The parasite contains an endosymbiotic alpha-proteobacterium of the genus Wolbachia that is required for normal worm development and fecundity and is also implicated in the pathology associated with infections by these filarial nematodes. Bacterial artificial chromosome libraries were constructed from B. malayi DNA and provide over 11-fold coverage of the nematode genome. Wolbachia genomic fragments were simultaneously cloned into the libraries giving over 5-fold coverage of the 1.1 Mb bacterial genome. A physical framework for the Wolbachia genome was developed by construction of a plasmid library enriched for Wolbachia DNA as a source of sequences to hybridise to high-density bacterial artificial chromosome colony filters. Bacterial artificial chromosome end sequencing provided additional Wolbachia probe sequences to facilitate assembly of a contig that spanned the entire genome. The Wolbachia sequences provided a marker approximately every 10 kb. Four rare-cutting restriction endonucleases were used to restriction map the genome to a resolution of approximately 60 kb and demonstrate concordance between the bacterial artificial chromosome clones and native Wolbachia genomic DNA. Comparison of Wolbachia sequences to public databases using BLAST algorithms under stringent conditions allowed confident prediction of 69 Wolbachia peptide functions and two rRNA genes. Comparison to closely related complete genomes revealed that while most sequences had orthologs in the genome of the Wolbachia endosymbiont from Drosophila melanogaster, there was no evidence for long-range synteny. Rather, there were a few cases of short-range conservation of gene order extending over regions of less than 10 kb. The molecular scaffold produced for the genome of the Wolbachia from B. malayi forms the basis of a genomic sequencing effort for this bacterium, circumventing the difficult challenge of purifying sufficient endosymbiont DNA from a tropical parasite for a whole genome shotgun sequencing strategy.  相似文献   

19.
Cultivation-independent surveys of ribosomal RNA genes have revealed the existence of novel microbial lineages, many with no known cultivated representatives. Ribosomal RNA-based analyses, however, often do not provide significant information beyond phylogenetic affiliation. Analysis of large genome fragments recovered directly from microbial communities represents one promising approach for characterizing uncultivated microbial species better. To assess further the utility of this approach, we constructed large-insert bacterial artificial chromosome (BAC) libraries from the genomic DNA of planktonic marine microbial assemblages. The BAC libraries we prepared had average insert sizes of 80 kb, with maximal insert sizes > 150 kb. A rapid screening method assessing the phylogenetic diversity and representation in the library was developed and applied. In general, representation in the libraries agreed well with previous culture-independent surveys based on polymerase chain reaction (PCR)amplified rRNA fragments. A significant fraction of the genome fragments in the BAC libraries originated from as yet uncultivated microbial species, thought to be abundant and widely distributed in the marine environment. One entire BAC insert, derived from an uncultivated, surface-dwelling euryarchaeote, was sequenced completely. The planktonic euryarchaeal genome fragment contained some typical archaeal genes, as well as unique open reading frames (ORFs) suggesting novel function. In total, our results verify the utility of BAC libraries for providing access to the genomes of as yet uncultivated microbial species. Further analysis of these BAC libraries has the potential to provide significant insight into the genomic potential and ecological roles of many indigenous microbial species, cultivated or not.  相似文献   

20.
Two plant-transformation-competent large-insert binary clone bacterial artificial chromosome (hereafter BIBAC) libraries were previously constructed for soybean cv. Forrest, using BamHI or HindIII. However, they are not well suited for clone-based genomic sequencing due to their larger ratio of vector to insert size (27.6 kbp:125 kbp). Therefore, we developed a larger-insert bacterial artificial chromosome (BAC) library for the genotype in a smaller vector (pECBAC1), using EcoRI. The BAC library contains 38,400 clones; about 99.1% of the clones have inserts; the average insert size is 157 kbp; and the ratio of vector to insert size is much smaller (7.5 kbp:157 kbp). Colony hybridization with probes derived from several chloroplast and mitochondrial genes showed that 0.89% and 0.45% of the clones were derived from the chloroplast and mitochondrial genomes, respectively. Considering these data, the library represents 5.4 haploid genomes of soybean. The library was hybridized with six RFLP marker probes, 5S rDNA and 18S-5.8S-25S rDNA, respectively. Each RFLP marker hybridized to about six clones, and the 5S and 18S-5.8S-25S rDNA probes collectively hybridized to 402 BACs—about 1.05% of the clones in the library. The BAC library complements the existing soybean Forrest BIBAC libraries by using different restriction enzymes and vector systems. Together, the BAC and BIBAC libraries encompass 13.2 haploid genomes, providing the most comprehensive clone resource for a single soybean genotype for public genome research. We show that the BAC library has enhanced the development of the soybean whole-genome physical map and use of three complementary BAC libraries improves genome physical mapping by fingerprint analysis of most of the clones of the library. The rDNA-containing clones were also fingerprinted to evaluate the feasibility of constructing contig maps of the rDNA regions. It was found that physical maps for the rDNA regions could not be readily constructed by fingerprint analysis, using one or two restriction enzymes. Additional data to fingerprints and/or different fingerprinting methods are needed to build contig maps for such highly tandem repetitive regions and thus, the physical map of the entire soybean genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号