首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of MHC-encoded determinants recognized by hapten- and allo-specific cytotoxic T cells was analyzed with the use of cell lines expressing recombinant H-2Dd and H-2Ld MHC products. Bulk cultures of CTL against TNP-self, FITC-self, and AED-self recognized self determinants associated with the N/C1 domains of both Dd and Ld products. A number of allo- and hapten-specific CTL clones were also tested for recognition of the recombinant MHC products. The allo clones specific for Ld or Dd antigens recognized the respective N/C1-associated determinants. In addition, all clones generated against H-2q and known to cross-react with H-2Dd antigens recognized determinants associated with the N/C1-associated Dd determinants. Thus, some of the results obtained with CTL parallel, whereas others contrast with, those findings obtained with monoclonal anti-H-2 antibodies. Similar to the observations made with the monoclonal antibodies, no determinant as defined by T cells has been found to be lost as a result of the interaction between the N/C1 and C2/M domains of the Ld and Dd proteins. Nor did our studies detect the presence of new antigens resulting from the interaction of these gene products. However, the present T cell findings continue to contrast previous results demonstrating that antibody interaction with class I products includes recognition of C2/M-associated epitopes.  相似文献   

2.
Studies of immune recognition of hybrid class I antigens expressed on transfected cells have revealed an apparent general requirement that the N(alpha 1) and C1(alpha 2) domains be derived from the same gene in order to preserve recognition by virus-specific H-2-restricted and allospecific T cells. One exception has been the hybrid DL antigen in which the N domain of H-2Ld has been replaced by that of H-2Dd. Cells bearing this molecule serve as targets for some virus and allospecific CTL. Because cells expressing the reciprocal hybrid LD (N domain of H-2Dd replaced by that of H-2Ld) antigen have not been available, it has not been possible to evaluate whether this exception stemmed from the relatedness of H-2Ld and H-2Dd or whether the DL antigen fortuitously preserved some function of the parent molecule as a rare exception. To assess this question, and to evaluate the contribution of the N and C1 domains of H-2Ld and H-2Dd to serologic and T cell recognition, we have constructed the reciprocal chimeric gene pLD (the N exon of H-2Ld substituted for that of H-2Dd), introduced this into mouse L cells by DNA-mediated gene transfer, and analyzed the expressed product biochemically, serologically, and functionally. Transformant L cells expressing either LD or DL antigens were both reactive with a number of anti-H-2Ld or anti-H-2Dd N/C1-specific monoclonal antibodies, indicating the preservation in the hybrid molecules of determinants controlled by discrete domains. Mab binding was generally greater with cells expressing hybrid DL antigen than with those transformants expressing LD molecules. Moreover, the amount of beta 2M associated with DL antigens was more than that associated with LD. Cells expressing hybrid DL antigens were recognized as targets by bulk and cloned allospecific anti-H-2Dd and anti-H-2Ld CTL, whereas cells expressing LD molecules were not recognized by any of the T cells tested. VSV-specific H-2Ld-restricted CTL failed to lyse VSV-infected targets expressing either DL or LD. These results indicate that T cell reactivity of cells expressing the DL hybrid antigen is an exception to the observed general requirement for class I antigens to possess matched N and C1 domains for functional T cell recognition by T cells restricted to parental antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Among the more than 20 H-2-like genes in the BALB/c mouse genome, there are two classical transplantation antigens (H-2Dd and H-2Ld) encoded at the D-end of the major histocompatibility complex. Here we report the identification of a bacteriophage clone that encodes H-2Dd. The H-2Dd gene was identified by nucleotide sequence analysis and by characterization of the new H-2 antigen expressed when the cloned gene was introduced into mouse L cells by DNA-mediated gene transfer. The previously identified H-2Ld gene was then compared with the H-2Dd gene. The two genes appear to have the same general structure, and for the 854 nucleotides that have been compared, the two genes are 89% homologous. The H-2Ld and H-2Dd antigens expressed on mouse L cells after DNA-mediated gene transfer were examined by immunologic criteria. The stably transformed cell lines express apparently normal levels of H-2Dd and H-2Ld on the cell surface as measured by quantitative immunofluorescence by using monoclonal anti-H-2 antibodies. They synthesize H-2Dd and H-2Ld at normal rates as determined by endogenous labeling and immunoprecipitation of cell extracts. They evoke a strong specific serologic response when used to immunize C3H mice. The newly expressed antigens are able to serve as targets for alloreactive T cells. These cloned genes provide good substrates for examining the evolution of two closely linked H-2 antigen genes. Comparison of the structures of these genes provides clues to the basis for the differential expression of these antigens and their different biologic functions.  相似文献   

4.
One model to explain the high frequency of alloreactive T cells proposes that allogeneic MHC molecules are recognized together with host cell-derived peptides. A model system was developed to investigate the relevance of this mechanism by expression of H-2Dd or H-2Ld in 174xCEM.T2 (T2) cells. This human cell line contains a mutation in its Ag-processing pathway that should restrict the association of endogenous peptides with cell surface class I molecules. CTL generated by stimulating C57BL/6 (H-2b) responder cells with H-2Dd or H-2Ld transfectants of the human B cell line C1R or the murine T cell lymphoma EL4 were assayed for their ability to recognize alloantigenic determinants on these transfectants. The major fraction of the H-2Dd-specific allogeneic CTL response, generated in a MLC or under clonal limiting dilution conditions, was composed of T cells that recognized H-2Dd expressed on C1R or EL4 cells, but failed to recognize this molecule on T2 cells. Clonal analysis indicated that approximately one-third of these CTL recognized determinants that were unique to H-2Dd expressed on C1R stimulator cells whereas the remainder recognized determinants that were also found on EL4 transfectants. Less than 10% of H-2Dd-reactive CTL recognized the T2 transfectant, and these clones also killed C1R-Dd and EL4-Dd. This result suggests that the great majority of H-2Dd-specific alloreactive CTL recognize determinants that are formed by a complex of H-2Dd with endogenous peptides that are absent or significantly reduced in T2 cells. Based on recognition of human or murine transfectants, these CTL exhibit some level of specificity for the structure or composition of the bound peptides. Examination of allogeneic CTL specific for H-2Ld revealed populations similar to those described for H-2Dd. In addition, a major new population was present that recognized determinants shared between C1R-Ld and T2-Ld but not present on EL4-Ld. These results are consistent with the idea that the alloreactive response to H-2Ld is also largely dependent on the presence of bound peptide. However, they also may indicate that the H-2Ld molecule expressed on T2 cells is occupied by one or more peptides that are shared with other human, but not murine, cells. The significance of these results to current models of alloreactivity is discussed.  相似文献   

5.
Five different sublines of the BALB/c murine S49.1 T cell lymphoma were found to exhibit distinct patterns of absence of detectable H-2d class I major histocompatibility antigen expression. The results were demonstrated and verified by a) the generation of H-2Kd-, H-2Dd,Ld-, and H-2Ld-specific cytotoxic T lymphocytes that were assayed on S49.1 target cell lines, b) antibody-mediated cytotoxicity with the use of anti-H-2d monoclonal reagents, and c) flow microfluorometry. The five lines investigated were S49.1, T-25, T-25ADH, Thy-1-, and 100/0. None of these lines expressed detectable levels of Ld. S49.1 expressed both Kd and Dd, T-25 and T-25ADH expressed Dd but not Kd or Ld, Thy-1- expressed Kd but not Dd or Ld, and 100.0 did not express any detectable amounts of Kd, Dd, or Ld. These results indicate that K and D (and L) antigens can be expressed independently of each other and suggest that expression of class I antigens is controlled in a locus-specific manner.  相似文献   

6.
Murine cytotoxic responses to TNP-modified syngeneic cells (TNP-self) have been shown to exhibit preferential recognition of K or D end self products encoded by the H-2 complex. In the present study, a number of B10 congenic and recombinant mouse strains were investigated to determine the H-2K and H-2D-restricted FTC-self CTL response patterns, and these were compared with the CTL response patterns obtained for TNP-self. The results indicate that for strains possessing the H-2k,d,h2,h4 haplotypes, respectively, preferential CTL responses were observed against FTC recognized in association with Kk over Dk, Dd over Kd, and Kk over Db. These patterns of preferential CTL responses were the same as those reported for TNP-self as well as several anti-viral CTL responses. In contrast to the results obtained in the B10.A strain, in which Kk preference was observed over Dd for TNP-self CTL, no preferential CTL response was observed when FTC was recognized in association with Kk and with Dd. In this context, it was observed that the CTL response to FTC recognized in association with Dd was particularly strong. This strong D end-associated response was shown to involve D locus products, and no evidence was obtained indicating that L locus self products were involved. These studies are discussed with respect to the possibility that different haptens can be recognized by CTL in association with different self determinants encoded by the same H-2 gene products.  相似文献   

7.
To determine roles of MHC class I and II genes in protection against Toxoplasma gondii, H-2 congenic and mutant mice were infected perorally with bradyzoites of T. gondii and brain cysts were enumerated 30 days later. As B10 mice (H-2b) are cyst susceptible and B10.A mice (H-2a) are cyst resistant, B10 congenic mice having the same alleles but different H-2 haplotypes were used to locate the controlling gene. Genes located at H-2L (i.e., class I genes) were found to regulate the number of brain cysts which form following peroral infection with T. gondii (p less than 0.001) with Ld being resistant and Lb being susceptible. The regulatory function of the H-2L gene product was confirmed through the study of D mutant (dm) mice. B10.D2-H-2dm1 (dm1) mice have a gain-loss mutation in Dd and Ld (i.e., recombination of Ld and Dd) and BALB/c-H-2dm2 (dm2) mice have a deletion of the Ld gene. Both these dm strains were cyst susceptible (p less than 0.001). These results provide the first direct evidence that class I genes regulate numbers of T. gondii cysts that form. In vivo ablation of CD8+ T cells with mAb YTS 169.4 converted cyst resistant B10.BAR12 mice to cyst susceptible. This result is consistent with a role for MHC restricted CD8+ cytotoxic (or suppressor) T cell regulation of cyst formation. A mutation in Ia in B6.C-H-2bm12 (bm12) mice amplified cyst numbers in susceptible mice, which is consistent with the importance of helper/inducer T cells in the induction of cytotoxic T cells. These findings are relevant to understanding the complex immunologic mechanisms that protect against T. gondii infection, development of protective preparations, and provide a conceptual basis for determining whether similar immunogenetic regulation of susceptibility is also operative in humans.  相似文献   

8.
Cytotoxic T lymphocyte (CTL) recognition sites on class I major histocompatibility complex molecules have been investigated by several laboratories by using cloned genes expressed on mouse L cells by DNA-mediated gene transfer. Recombinant genes, constructed by restriction endonuclease treatment of cloned H-2Dd and Ld genes and exchange of the N and C1 exons (exon shuffling) have provided an additional tool. These hybrid H-2 molecules expressed on L cells have been used as targets to achieve more precise localization of site(s) recognized by allospecific and virus-specific CTLs. CTL systems were chosen that limit recognition to either the Dd or Ld alloantigen or to virus and Dd or Ld complexes. Using this approach, we were able to map essential restricting site(s) to the N and/or C1 domains. Additional evidence is presented that the cytoplasmic tail of H-2 may be involved in interactions with some viral antigens and effect the formation of an immunogenic complex.  相似文献   

9.
10.
Chimeric histocompatibility genes encoding the amino-terminal (beta 1) domain of the class II Ak beta polypeptide and the carboxy-terminal (C2, transmembrane, and intracytoplasmic) domains of either the class I H-2Ld or H-2Dd molecules were stably introduced into mouse L cells. Although both were transcribed, only 5' Ak beta/3' H-2Dd transformants had significant cell membrane expression of a 30-40 kd, heterogeneous glycoprotein containing Ak beta 1 and H-2Dd (C2) serological epitopes. These transformants had a unique pattern of reactivity with monoclonal antibodies previously identified as requiring the Ak beta 1 domain for recognition of complete I-A molecules. These results allow new insight into the structural requirements for cell surface expression of proteins and provide unique cellular reagents for the dissection of humoral and cell-mediated recognition of MHC molecules.  相似文献   

11.
The Ag specificity and MHC restriction of the CTL response to adenovirus 5 (Ad5) in three strains of mice, C57BL/10 (H-2b), BALB/c (H-2d), and C3H/HeJ (H-2k), were tested. Polyclonal Ad5-specific CTL were prepared by priming mice in vivo with live Ad5 virus followed by secondary in vitro stimulation of the spleen cells with virus-infected syngeneic cells. The Ad5-specific CTL were Db restricted in C57BL/10 and Kk restricted in C3H/HeJ. In BALB/c mice both Kd- and Dd/Ld-restricted CTL were detected. The polyclonal Ad5-specific CTL response in C57BL/10 mice is directed exclusively against the products of the E1A region, which comprises only 5% of the Ad5 genome. In BALB/c mice E1A is at best a very minor target Ag and in C3H/HeJ mice E1A is not recognized at all. Using the H-2 congenic mouse strains B10.BR (H-2k) and C3H.SW (H-2b) it was shown that the immunodominance of E1A is H-2 dependent. The 19-kDa glycoprotein encoded in the E3 region of Ad5, which binds to class I MHC in the endoplasmic reticulum and prevents its translocation to the cell surface, does not affect the specificity of the CTL response in C57BL/10 mice toward E1A. However, it affects the MHC restriction of the Ad5-specific response in BALB/c mice, selectively inhibiting generation of Kd-restricted CTL.  相似文献   

12.
BALB/c-H-2dm2 mice (H-2KdI-AdI-EdDd), a congenic strain of BALB/c mice, have a deletion of the class I MHC Ag, H-2Ld. This gene encodes the exclusive class I MHC-restricting gene product for vesicular stomatitis virus-specific cytolytic T lymphocytes. When dm2 mice were immunized with infectious vesicular stomatitis virus, a specific CTL response was generated. These CTL lysed VSV-infected targets that expressed Iad gene products, but not VSV-infected Iad- targets. The CTL were used initially as long term cytolytic lines; 13 CTL clones were derived by limit dilution. All of the clones expressed the phenotype CD3+, CD4+, CD8-; some clones expressed TCR that are members of the V beta 8 family, others did not. The clones were restricted by class II MHC Ag, both I-Ad and I-Ed serving as restricting elements for individual clones of the panel. All of the clones derived from dm2 mice were specific for the immunizing serotype, Indiana, of VSV and did not lyse syngeneic cells infected with VSV of the New Jersey serotype. Studies using defective interfering virus particles, UV light-inactivated virus, and purified micelles of the viral glycoprotein indicated that infectious virus was not required for sensitization of target cells for immune recognition by the class II MHC-restricted CTL clones. Additional studies using recombinant vaccinia virus vectors to sensitize targets confirmed the specificity of the clones for the viral glycoprotein. These studies also demonstrated a cryptic population of class II-restricted CTL in BALB/c lines specific for VSV G. Naturally occurring variant viruses and mutant viruses, selected for escape from neutralization by mAb, were used in an effort to map the determinant(s) recognized; on the basis of patterns of target cell lysis, three groups of epitopes recognized by the clones were defined. Therefore, in the absence of the class I MHC Ag required for a CTL response to VSV, dm2 mice generated CTL with the CD4+ phenotype that recognized different epitopes on the viral glycoprotein, and lysed cells in a class II-MHC restricted, Ag-specific manner.  相似文献   

13.
The effect of t-butyl hydroperoxide (t-BOOH) on the induction of the Major Histocompatibility Complex (MHC) class I genes has been studied in two cell clones (B9 and G2) of the methylcholanthrene-induced murine fibrosarcoma GR9. These two clones were selected based on their different biological and biochemical behavior specially related to their tumor induction capability when injected into a BALB/c mouse. t-BOOH (0.125 mM) induced the expression of H-2 molecules in both cell clones. In B9 cell clone, in which MHC basal expression is very low or absent, t-BOOH significantly induced H-2Kd, H-2Dd and H-2Ld molecules. In G2 cell clone the expression of MHC class I genes was also enhanced by the xenobiotic, the effect being especially significant on the H-2Ld molecule which is not expressed under basal conditions. H-2 molecules expression was accompanied by the activation of the transactivator factor NF kappa B. These results suggest that oxidative stress may modulate the antigen expression of tumor cells and thus the immune response of the host organism. Basal levels of oxidative parameters, such as anti-oxidant enzymes, malondialdehyde (MDA) and the DNA damaged base 8-hydroxy-2'-deoxyguanosine (8-OHdG), showed differences between the two fibrosarcoma cell clones.  相似文献   

14.
Helper T cells specific for N-iodoacetyl-N'-(5-sulfonic 1-naphthyl) ethylene diamine (I-AED) were generated in (C56BL/6 X C3H/He)F1 mice by immunization with I-AED-modified syngeneic cells (AED-self). The requirements for activation of hapten-induced helper cells were investigated. The results demonstrated that activation of AED and trinitrophenyl- (TNP) helper cells was strictly hapten specific. In addition, F1 AEd-helpers could be activated efficiently by either I-AED-modified H-2b or H-2k self components to enhance the anti-AED self-CTL responses. This contrasts with the previous findings demonstrating the failure of TNP-H-2b self to activate F1 TNP-helper cells. After AED-helpers were activated, they were capable of augmenting sensitization of cytotoxic T cells (CTL) against TNP-self. These results indicate that although the activation of hapten-reactive helper cells is antigen (hapten)-specific, the subsequent helper activity, as determined by augmentation of CTL responses against another hapten, is antigen nonspecific. Since helper function was antigen nonspecific, F1 AED-helper cells activated by AED-H-2b or AED-H-2k self were tested for their ability to augment the F1 and anti-TNP-H-2b CTL response. The results indicate that the Ir gene defect in the ability of F1 spleen cells to respond to TNP-H-2b self could not be corrected by these helper cells. These results are discussed in the light of Ir gene controlled differences in the activation of AED and TNP-helper cells and possible models for augmenting CTL responses against various antigens in strains that generate marginal helper activity to TNP-self.  相似文献   

15.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

16.
The structure-function relationship of individual coding regions of class I mouse major histocompatibility complex proteins was studied by a combination of recombinant DNA, gene transfer techniques, and serologic and functional characterization. To examine the role of alpha 1 and alpha 2 regions in antibody and CTL recognition, the third exon of H-2Dd, Kd, and Ld transplantation antigen genes was replaced by the homologous coding region of the Qa-2-coded class I gene, Q6. We have chosen to carry out the exon shuffling experiments between these two different types of class I genes, because they are structurally similar and did not evolve to carry out identical functions. Therefore, it is less likely that the hybrid proteins will fortuitously recreate alpha 1-alpha 2 controlled functionally important determinants. The replacement of H-2 alpha 2 coding region with its Q6 counterpart had different effects on the expression of the three genes. The mutant H-2Dd gene transfected into L cells was expressed at high levels and retained several of the serologic determinants found on parental H-2Dd and Q6 domains. The serologic epitopes on the mutant H-2Kd-transfected cells were detectable at very low levels, whereas the product of the mutant H-2Ld gene could not be identified at all. Analysis of cells transfected with mutant H-2Dd gene with alloreactive and minor antigen(s)-restricted cytotoxic T cells indicated that the hybrid proteins lost the ability to be recognized by T cells. Our data suggest that cytotoxic T cells recognize conformational determinants composed of amino acids from alpha 1 and alpha 2 regions. Alternatively, it could be proposed that T cell recognition sites located in a single alpha 1 or alpha 2 protein region are susceptible to distortion upon alpha 1-alpha 2 interactions. Such susceptibility to conformational changes of the amino-terminal domain of transplantation antigens could be of functional importance for H-2-restricted antigen presentation.  相似文献   

17.
Cytotoxic T lymphocytes (CTL) have been found to mediate protection in vivo against certain virus infections. CTL also may play an important role in control of infection by hepatitis C virus (HCV), but no CTL epitopes have yet been defined in any HCV protein. The nonstructural protein with homology to RNA polymerase should be a relatively conserved target protein for CTL. To investigate the epitope specificity of CTL specific for this protein, we used 28 peptides from this sequence to study murine CTL. Mice were immunized with a recombinant vaccinia virus expressing the HCV nonstructural region corresponding to the flavivirus NS5 gene (RNA polymerase), and the primed spleen cells were restimulated in vitro with peptides. CTL from H-2d mice responded to a single 16-residue synthetic peptide (HCV 2422 to 2437). This relatively conserved epitope was presented by H-2d class I major histocompatibility complex (MHC) molecules to conventional CD4- CD8+ CTL but was not recognized by CTL restricted by H-2b. Moreover, exon shuffle experiments using several transfectants expressing recombinant Dd/Ld and Kd demonstrated that this peptide is seen in association with alpha 1 and alpha 2 domains of the Dd class I MHC molecule. This peptide differs from the homologous segments of this nonstructural region from three other HCV isolates by one residue each. Variant peptides with single amino acid substitutions were made to test the effect of each residue on the ability to sensitize targets. Neither substitution affected recognition. Therefore, these conservative mutations affected peptide interaction neither with the Dd class I MHC molecule nor with the T-cell receptor. Because these CTL cross-react with all four sequenced isolates of HCV in the United States and Japan, if human CTL display similar cross-reactivity, this peptide may be valuable for studies of HCV diagnosis and vaccine development. Our study provides the first evidence that CD8+ CTL can recognize an epitope from the HCV sequence in association with a class I MHC molecule.  相似文献   

18.
B10.A (H-2Kk, H-2Dd) ectromelia-immune T cells from secondary responses in vitro were protent killers of both infected L929 (H-2Kk H-2Dk) and infected P-815 (H-2Kd, H-2Db) target cells. Specific competition with unlabelled targets showed that two separate T cell subsets were responsible for lysis of infected L929 and infected P-815 cells. One hypothesis to account for this (a form of "physiological interaction") is that T cells which kill one target e.g. infected L929) display only one out of two possible self-complementary recognition structures, in this example the H-2Kk alloantigen, not H-2Dd, whereas T cells that lyse infected P-815 targets display only H-2Dd, not H-2Kk. This hypothesis was tested and seems untenable because of the following results: A.TH (H-2Ks, H-2Dd) ectromelia-immune, secondary cytotoxic T cells which killed infected SJL/J (H-2Ks, H-2Ds) targets were themselves inactivated by pre-incubation with SJL/J cytotoxic T cells generated in one-way mixed lymphocyte reaction (MLR) against BALB/c (H-2Kd, H-2Dd). A.TL (H-2Ks, H-2Dd) ectromelia-immune secondary cytotoxic T cells which killed infected BALB/c targets were themselves inactivated by BALB/c cytotoxic T cells generated in MLR against SJL/J. Thus, virus-immune T cells which lyse infected targets by virtue of shared H-2K are also displaying H-2D alloantigen, and vice versa.  相似文献   

19.
Cytotoxic T cell responses to the murine Cytomegalovirus (MCMV) were elicited in BALB/c mice (H-2d) by infectious virus. Eight days after infection, MCMV-primed local lymph node T cells were either depleted for T cells expressing a V beta 8+ TCR or separated into V beta 8+ and V beta 8- subpopulations by a cell sorter using the mAb F23.1. T cells were then expanded in vitro under limiting dilution conditions in the presence of IL-2 and in the absence of viral Ag to avoid selection by Ag in vitro. Frequencies of CTL precursors specific for the Immediate-Early-Ag 1 of MCMV and restricted to H-2Ld were determined. L cells of the endogenous haplotype H-2k cotransfected with the genes for MCMV-IE 1 and H-2Ld were used as target cells. Detection of a CTL response required previous priming of the animals by infection in vivo (less than 1/10(6) for nonimmunized animals). In primed animals CTL precursors of this specificity and restriction were three to fivefold more frequent in the V beta 8+ population (1/9.900 to 1/22.300) than in the V beta 8- population (1/57.000 to 1/87.200). Control experiments showed that frequencies were not influenced by the treatment with the anti-V beta 8-antibody and the fluorescein-labeled anti-Ig itself. V beta 8+ and V beta 8- T cells did not reveal any frequency differences when several other responses were determined (TNP-specific self-restricted CTL precursor; Th cells specific for keyhole limpet hemocyanin or Listeria monocytogenes).  相似文献   

20.
The tumorigenicity of adenovirus type 12 (Ad12)-transformed cells has been attributed to the low levels of class I major histocompatibility complex (MHC) protein expression by these cells. These levels of class I proteins are thought to be below the threshold critical for cytotoxic T-lymphocyte recognition, a process that may be involved in tumor cell immunosurveillance. We have used gene transfer experiments to investigate the role played by class I protein expression in the tumorigenicity of Ad12-transformed BALB/c mouse cells in naive, syngeneic adult mice. Our Ad12-transformed mouse cells were tumorigenic in adult mice and were similar to other Ad12-transformed mammalian cells in that they expressed low levels of class I MHC mRNA and cell surface proteins. Despite these low levels of expression, the cells were highly immunogenic in syngeneic mice and were rejected as allografts by allogeneic mice. Transfection of genomic H-2Dd or H-2Ld fragments into these cells produced a variety of cell clones that expressed increased levels of cell surface class I proteins. These cells expressing high levels of class I protein were up to 16-fold more tumorigenic than the parental cells in syngeneic adult mice. Thus, by quantitative assays, the tumorigenicity of Ad12-transformed BALB/c mouse cells is not functionally related to the low levels of class I MHC proteins they express. The increased tumorigenicity expressed by H-2Dd- and H-2Ld-transfected cells was not detected in BALB/c nu/nu mice, suggesting that a thymus-dependent mechanism that is not mediated by evasion of cytotoxic T-lymphocyte recognition could contribute to the difference in tumorigenicity of Ad12-transformed BALB/c mouse cells that express low and high levels of class I MHC proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号