首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The fine structure of germinating Botrytis fabae conidia wasstudied using both chemically stained sections and freeze-etchedreplicas. Germinating conidia have fewer organelles than restingconidia, glycogen is absent, and prevacuoles have disappeared.Endoplasmic reticulum which occurs as small strands close tothe cell wall of resting conidia becomes, on germination, multiplesheets surrounding the nuclei. A cross wall is formed at thebase of the germ tube soon after germination commences. Thenew wall material which appears to be continuous with this septalwall is produced, at least partly, from a new wall layer laiddown in the centre of the old conidial wall. An apical corpuscleis present at the apex of young germ tubes. Freeze-etched preparationsshow the formation of lomasomes by the passage of vesicles throughthe plasmalemma of conidia and germ tubes. In young hyphae lomasomescontain a complex arrangement of branching tubules. Some ofthe particles on the outer plasmalemma of young hyphae are arrangedin a geometrical pattern.  相似文献   

2.
A monoclonal antibody was obtained from BALB/c mice immunized with Penicillium frequentans mycelium. The specificity of the antibody was evaluated by enzyme-linked immunosorbent and indirect immunofluorescence assays against the same mycelium. This IgM antibody cross-reacted with various strains of the Penicillium and Aspergillus genera. By indirect immunofluorescence assays, the antibody was able to stain about 10% of Penicillium and Aspergillus conidia, but major part of conidia did not absorb the fluorescence-labeled antibody before swelling. During germination of P. frequentans conidia, the germ tube wall which constitutes a continuation of an inner wall layer was also stained. During germination of P. griseofulvum, the protrusion of the germ tube wall was not always recognized by the antibody because the germ tube wall was constituted by a continuation of an outer spore wall layer. The study of the staining patterns of the spores and the protrusions suggests that the antibody specifically recognizes an antigen of the inner spore wall layer. The monoclonal antibody reacts with extracellular galactomannans produced by genera Aspergillus and Penicillium but is not directed against beta-(1,5)-linked galactofuranose units.  相似文献   

3.
Conidium (asexual spore) differentiation in wild-type and the wet-white (wetA) mutant of Aspergillus nidulans was compared in intact chains of successively older conidia. Carbohydrate cytochemistry helped define three stages (Stages I, II, and III) of wild-type conidium maturation on the basis of changes in the ultrastructure and composition of the conidium wall. Conidia of the wetA6 mutant strain formed normally but failed to mature during Stages II and III. Specifically, the inner wall layer of wetA6 conidia did not condense during Stage II and two wall layers that stained for carbohydrates did not form during the transition to Stage III. Concomitantly, wetA6 conidia formed large cytoplasmic vacuoles and underwent lysis. The wetA gene appears to have a conidium-specific function for the modification of the conidium wall during Stages II and III. These modifications of the conidium wall are essential for the stability of mature, dormant conidia.  相似文献   

4.
We used real-time atomic force microscopy with a temperature-controlled stage (37°C) to probe the structural and physicochemical dynamics of single Aspergillus fumigatus conidia during germination. Nanoscale topographic images of dormant spores revealed the presence of a layer of rodlets made of hydrophobins, in agreement with earlier electron microscopy observations. Within the 3-h germination period, progressive disruption of the rodlet layer was observed, revealing hydrophilic inner cell wall structures. Using adhesion force mapping with hydrophobic tips, these ultrastructural changes were shown to correlate with major differences in cell surface hydrophobicity. That is, the rodlet surface was uniformly hydrophobic due to the presence of hydrophobins, whereas the cell wall material appearing upon germination was purely hydrophilic. This study illustrates the potential of real-time atomic force microscopy imaging and force spectroscopy for tracking cell-surface dynamics.  相似文献   

5.
Each phialide had a thick-walled neck region located immediately below a light microscopically inconspicuous collarette. The thickened wall of the phialide neck was multilaminate, with layers of different electron transmission properties. A developmental stage in the formation of the first conidial initial was observed. Conidial initials blew out through the thickened neck region, increased in size, and were eventually delimited by centripetally developing septa. Mature, winged conidia had an electron-opaque outer wall layer and an electron-transparent inner wall layer. The wing was formed by separation of these outer and inner wall layers and buckling or wrinkling of the outer layer. As early as they could be discerned, conidial initials had developed the electron-opaque wall layer which characterized mature conidia. Each conidium-delimiting septum became bilayered; the upper layer formed part of the conidial base, and the lower layer became a portion of the wall of the next conidial initial. Phialides lacked an electron-opaque wall layer, and they possessed areas of abundant rough endoplasmic reticulum, as well as free ribosomes. Lipid globules were also abundant, especially in conidia. The distinction between phialides and annellides was questioned.  相似文献   

6.
Metarhizium anisopliae var. acridum (IMI 330189) can produce at least three spore types in vitro; blastospores, submerged conidia, and aerial conidia, as defined by culturing conditions, sporogenesis, and spore morphology. This study compares morphological characteristics (dimensions and cell wall structure), chemical properties of cell wall surfaces (charge, hydrophobicity, and lectin binding), and performance (germination rate and drying stability) among these three spore types. Submerged conidia and aerial conidia both possessed thick, double-layered cell walls, with hydrophobic regions on their surfaces. However, in contrast to aerial conidia, submerged conidia have: (1) a greater affinity for the lectin concanavalin-A; (2) more anionic net surface charge; and (3) a less distinct outer rodlet layer. Blastospores were longer and more variable in length than both submerged conidia and aerial conidia, and had thinner single-layered cell walls that lacked an outer rodlet layer. Also, blastospores had a greater affinity than either conidia type for the lectin, wheat germ agglutinin. Blastaspores lacked hydrophobic regions on their surface, and had a lower anionic net surface charge than submerged conidia. In culture, blastospores germinated the fastest followed by submerged conidia, and then aerial conidia. Survival of submerged conidia and aerial conidia were similar after drying on silica gel, and was greater than that for blastospores. We provide corroborating information for differentiating spore types previously based on method of production, sporogenesis, and appearance of spores. These physical characteristics may have practical application for predicting spore-performance characteristics relevant to production and efficacy of mycoinsecticides.  相似文献   

7.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

8.
This study evaluates osmolality of a submerged conidia-producing medium in relation to the following spore characteristics: yield, morphology (dimensions and cell wall structure), chemical properties of cell wall surfaces (charge, hydrophobicity, and lectin binding), cytoplasmic polyols and trehalose, and performance (drying stability and pathogenicity). Spore production was increased by the addition of up to 150 g l?1 polyethylene glycol 200 (PEG). Spores from high osmolality medium (HOM spores) containing 100 g l?1 PEG had thin cell walls and dimensions more similar to blastospores than submerged conidia or aerial conidia. However, a faint electron-dense layer separating primary and secondary HOM spores’ cell walls was discernable by transmission electron microscopy as found in aerial and submerged conidia but not found in blastospores. HOM spores also appeared to have an outer rodlet layer, unlike blastospores, although it was thinner than those observed in submerged conidia. HOM spores’ surfaces possessed hydrophobic microsites, which was further evidence of the presence of a rodlet layer. In addition, HOM spores had concentrations of exposed N-acetyl-β-d-glucosaminyl residues intermediate between blastospores and submerged conidia potentially indicating a masking of underlying cell wall by a rodlet layer. All spore types had exposed α-d-mannosyl and/or α-d-glucosyl residues, but lacked oligosaccharides. Similar to blastospores, HOM spores were less anionic than submerged conida. Although HOM spores had thin cell walls, they were more stable to drying than blastospores and submerged conidia. Relative drying stability did not appear to be the result of differences in polyol or trehalose concentrations, since trehalose concentrations were lower in HOM spores than submerged conidia and polyol concentrations were similar between the two spore types. HOM spores had faster germination rates than submerged conidia, similar to blastospores, and they were more pathogenic to Schistocerca americana than submerged conidia and aerial conidia.  相似文献   

9.
Summary The fine structure of resting and germinating conidia ofPenicillium chrysogenum has been examined by electron microscopy. In addition to enlargement of the cells, a number of changes in ultrastructure become evident as morphogenesis proceeds. The newly synthesized germ tube is continuous with the corresponding layers of the conidial wall. Some conidial wall layers, however, do not extend into the hyphal wall. Several sections showing initial septum synthesis suggest that a septal pore is not a necessary structural entity. A characteristic orientation of the initial septum formed after germination is described. Aside from numerical considerations, no significant changes occur in nuclei, mitochondria, or ribosomes. The electron micrographs illustrate the presence of spherosomes, lomasomes, and nucleoli; the possible significance of these structures is discussed.  相似文献   

10.
A cultivation system has been developed for Penicillium urticae (NRRL 2159A) which yields 'microcycle' conidiation in submerged culture. Spherical growth of conidia was initiated by incubation at 37 degrees C in a growth-favoring medium. Transfer of these enlarged conidia to a nitrogen-poor medium at 35 degrees C resulted in synchronous germination and limited outgrowth followed by roughly synchronous conidiogenesis. An ultrastructural study of the germination stage indicated nuclear migration into the emerging germ tube whose new cell wall was an extension of the parent conidium's innermost cell wall layer. Septal formation at the neck of the germ tube followed. The septal pore was filled with particulate material and the septal membranes possessed unusual linear elements in their median hydrophobic zones. The germ tube, which possessed a smooth-surfaced plasma membrane, continued to elongate with periodic septum formation. The parent conidium and later the proximal germ tube showed progressive vacuolation and the cytoplasm became largely occupied by electron-translucent material. In older cells the septal pore was blocked by Woronin bodies. Compared with normal conidial germination this microcycle' germination is far more synchronous and the resultant germling is morphologically simpler. In ultrastructural terms, however, germination appears to be identical with that obtained at 28 degrees C.  相似文献   

11.
12.
The sterol content of germinating conidia of the opportunistic pathogenic fungus Aspergillus fumigatus has been correlated with germination phase and sensitivity to polyene antibiotics. The sterol and sterol ester contents of walls did not change during germination. The sterol ester content of membranes and cell sap remained constant during germination, whereas the sterol content increased during the outgrowth of germ tubes. On the basis of differential extraction studies it was concluded that the loss of resistance to polyenes that occurred in the early stages of swelling of conidia during germination was not due to a movement of sterol or sterol ester out of the wall. Radioactive-labelling experiments demonstrated that, although the amounts of conidial wall sterol and sterol ester did not change during germination, they were metabolically active. Changes in the turnover rate of wall and membrane sterol and sterol ester during germination were investigated and their relationship to a possible mechanism for the change from resistance to sensitivity to polyene antibiotics is discussed.  相似文献   

13.
Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is correlated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemistry and cytology during the germination, we selected 3364 function identified ESTs from T. rubrum cDNA library to construct cDNA microarrays, and compared the gene expression levels of conidia and germinating phase. Data analysis indicated that 335 genes were up-regulated during the germination, which mainly encoded translated, modified proteins and structural proteins.The constituents of cell wall and cell membrane were synthetized abundantly, suggesting that they are the foundation of cell morphogenesis. The ingredients of the two-component signal transduction system were up-regulated, presuming that they were important for the conidial germination. Genes of various metabolic pathways were expressed prosperously, especially the genes that participated in glycolysis and oxidative phosphorylation were up-regulated on the whole, demonstrating that in the environment with sufficient oxygen and glucose, conidia obtained energy through aerobic respiration.This paper provides important clues which are helpful to understanding the changes in gene expression, signal conduction and metabolism characteristics during T. rubrum conidial germination, and possess significant meaning to the study of other superficial dermatophytes.  相似文献   

14.
Fusarium species involved in the Fusarium head blight complex in Western Europe were investigated for their potential to infect and colonize non-damaged wheat leaves and to produce conidia on senescing wheat leaves incubated at high relative humidity. Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium poae and Fusarium tricinctum did not directly penetrate the leaf tissue after conidia germination on the leaf surface. Germ tubes grew on the host surface for 24–36 hr forming a mycelial network. After invading the host, some species formed runner hyphae between cell wall layers or underneath the cuticular layer. Macroscopic symptoms developed on leaves and stems from 7 d post inoculation. Inside leaf tissues, hyphae thickened in diameter and were both inter- and intra-cellular. Fusarium tricinctum formed sporophores which erupted through the leaf surface releasing numerous conidia. Incubation of senescing leaves at 100 % relative humidity for 48 hr resulted in sporulation of all Fusarium spp.  相似文献   

15.
The process of in vitro seed germination of Cymbidium ensifoliumcultivar Si-ji-lan could be divided into the following five stages: (1) Proembryos wereswollen, outer layer cells became irregular in shape. The tangential wall of outer layer cells of proembryos was thickened. The terminal cells were much smaller than basiccells. (2) Seeds germinated and differentiated into protocorms with terminal or lateralmeristem. (3) On one flank of the terminal meristem a single cotyledon was differen-tiated. (4) After the first foliage leaf was formed in the opposite side of the cotyledon,the protocorms developed into rhizomes. (5) As the third or forth leaf was formed, young roots were initiated. The results stained by Suden IV shot that the possiblecause for quite slow seed germination rate of Cymbidium ensifolium in vitro is due tothe thickened layers of seed coat, reducing its penetrability on the surface of proem-bryo. During seed germination the lipid and starch in the embryo cells were reduced.The reduction of starches may be closely correlated to the meristem formation.  相似文献   

16.
Germination of conidia of Entomophaga maimaiga, an important fungal pathogen of gypsy moth, Lymantria dispar, was investigated on water agar and larval cuticle at varying densities. Percent germination was positively associated with conidial density on water agar but not on larval cuticle. When conidia were showered onto water agar, the rate of germination was much slower than on the cuticle of L. dispar larvae. From the same conidial showers, the resulting conidial densities on water agar were much higher than those on larval cuticle in part because many conidia adhered to setae and did not reach the cuticle. A second factor influencing conidial densities on larval cuticle was the location conidia occurred on larvae. Few conidia were found on the flexible intersegmental membranes in comparison with the areas of more rigid cuticle, presumably because conidia were physically dislodged from intersegmental membranes when larvae moved. Conidia were also exposed to heightened CO(2) to evaluate whether this might influence germination. When conidia on water agar were exposed to heightened CO(2) levels, germinating conidia primarily formed germ tubes while most conidia exposed to ambient CO(2) rapidly formed secondary conidia.  相似文献   

17.
A number of features not described previously has been revealed in electron-microscope studies of mature chlamydospores of Fusarium oxysporum. On the maturation of one isolate, many spores formed a thick matrix-like layer containing electron-dense particles on the exterior surface of the spore wall. In thin sections of mature chlamydospores of the same isolate, cisternae of endoplasmic reticulum surrounding, and in close apposition to, the limiting boundary of the lipid bodies were revealed. The germination of chlamydospores was accompanied by (a) the rapid appearance of polysaccharide deposits and changes in the configuration of some subcellular organelles, (b) the formation of a new wall layer between the plasma membrane and the innermost layer of the spore wall, (c) the rupture of the outermost coats of the spore wall, and (d) the emergence of the germ tube as an extension of the new wall layer.  相似文献   

18.
Although the process of conidial germination in filamentous fungi has been extensively studied, many aspects remain to be elucidated since the asexual spore or conidium is vital in their life cycle. Breakage and reformation of cell wall polymer bonds along with the maintenance of cell wall plasticity during conidia germination depend upon a range of hydrolytic enzymes whose activity is analogous to that of expansins, a highly conserved group of plant cell wall proteins with characteristic wall loosening activity. In the current study, we identified and characterized the eglD gene in Aspergillus nidulans, an expansin-like gene the product of which shows strong similarities with bacterial and fungal endo-beta1,4-glucanases. However, we failed to show such activity in vitro. The eglD gene is constitutively expressed in all developmental stages and compartments of A. nidulans asexual life cycle. However, the EglD protein is exclusively present in conidial cell walls. The role of the EglD protein in morphogenesis, growth and germination rate of conidia was investigated. Our results show that EglD is a conidial cell wall localized expansin-like protein, which could be involved in cell wall remodeling during germination.  相似文献   

19.
Zalokar , Marko . (Yale U., New Haven, Conn.) Enzyme activity and cell differentiation in Neurospora. Amer. Jour. Bot, 46(7): 555–559. Illus. 1959.—Morphological differences were observed in vegetative cells of Neurospora of different ages and in different parts of the mycelium. The surface layer of mycelium grown in standing cultures could be separated from the deep layer. The first contained most of the growing hyphae rich in protoplasm, while the second contained heavily vacuolated hyphae laden with fat droplets. Specific activities of several enzymes were studied in conidia, young hyphae, and the surface and deep layers of mature mycelium. Succinic dehydrogenase was low in conidia and about 10 times more active in mature mycelium. The surface layer had twice the activity of the deep layer. Aldolase increased about 3 times after the germination of conidia; it was slightly lower in the surface than in the deep layer of mycelium. Tryptophan synthetase exhibited only small differences between conidia and mycelium and was slightly lower in the surface than in the deep layer. β-galactosidase was formed in appreciable amounts only after prolonged growth and had a much higher specific activity in the deep layer. The results were discussed in connection with cell differentiation and aging.  相似文献   

20.
The ultrastructure of developing basidiospores in Rhizopogon roseolus is described. When viewed in the fruiting body chamber using scanning electron microscopy, basidiospores appear narrowly ellipsoid and have smooth walls. Eight basidiospores are usually produced on the apex of each sterigma on the basidium. Transmission electron micrographs showed that basidiospores formed by movement of cytoplasm (including the nuclei) via the sterigmata, and then each basidiospore eventually became separated from its sterigma by an electron-lucent septum. The sterigma and basidium subsequently collapsed, resulting in spore release. Freshly released spores retained the sterigmal appendage connected to the collapsed basidium. After spore release, the major ultrastructural changes in the spore concerned the lipid bodies and the spore wall. During maturation, lipid bodies formed and then expanded. Before release, the spore wall was homogeneous and electronlucent, but after release the spore wall comprised two distinct layers with electron-dense depositions at the inner wall, and the dense depositions formed an electron-dense third layer. The mature spore wall complex comprised at least four distinct layers: the outer electron-lucent thin double layers, the mottled electron-dense third layer, and the electron-lucent fourth layer in which electron-lucent granular substances were dispersed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号