首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanofocusing of light source was proposed and simulated using the dielectric-loaded surface plasmon polariton (SPP) model with various laterally tapered planar dielectric architectures on the top surface of the metal. By using finite-difference time-domain method, enhancement factor for the local electric field under distinctive incident polarization was analyzed with different taper apexes under various incident wavelengths and incident angles of the excitation laser. The SPP dispersion and the effect of dissipation on adiabatic nanofocusing of SPP in a sharp taper structure were used to predict the optimal taper angles of the structure and to explain the phenomena of SPP wave slowing down as it propagating toward the taper end. This SPP nanofocusing process was also experimentally realized by illuminating the structure of a tapered CdS nanoribbon deposited on the Ag surface. As the emission of the focused SPP at the taper end, the proposed plasmonic structure can be severed as a light nanosource emitter in the future optical integrated circuits.  相似文献   

2.
Surface plasmon polariton (SPP) excitation of the coupled light at small contact area of chromium pillars as the interface of metastructured gold funnel layer and silica medium can be enhanced locally in the gold meta-funnel-structured filter. In the present investigation, the filter is comprised of three layers, namely gold meta-funnels, nano-sized chromium pillars, and silica as the substrate. The incoming infrared (IR) waves, coupled with the excited plasmons at the first and second layers, form an excitation, known as deformed plasmon polariton. Asymmetric distribution of localized SPPs takes place owing to the inherent converging plasmonic feature of the gold funnel structure. The formation of reflection peaks with different magnitudes at different incidence angles of the polarized wave in the spectral characteristics makes the structure prominent for filtering the IR waves. Moreover, the gold meta-funnel-structured filter possesses the additional feature of distinguishing the type of polarized incidence wave. It was found that the transmission remains maximum corresponding to the normal incidence of the TE-polarized waves, whereas the TM-polarized waves over the same wavelength range are almost blocked for any value of incidence angle. The existence of transmission peaks corresponding to the TE waves demonstrates another application of this device as metastructured polarizer filter.  相似文献   

3.
A method to sense the excitation of surface plasmon polariton (SPP) on metallic grating device using the transmitted signal will be presented. The grating transmittance signal will be fully characterized varying the light incident angle and azimuthal grating orientation by means of the SPP vector model and rigorous coupled-wave analysis simulation. Simulation results will be compared with experimental measurements obtained with a 635 nm wavelength laser in the transverse magnetic polarization mode. The laser will light grating devices in contact with either air or water through a customized microfluidic chamber. A characterization of the diffracted rays will show the relationship between the grating coupling configuration and the Kretschmann one. In fact, the diffracted ray affected by SPP resonance is transmitted with an output angle which is the same incident angle that should be used to excite SPP in Kretschmann configuration. Lastly, the grating parameters (amplitude and metal thickness) impact on transmittance signal will be analyzed with respect to the order zero reflectance signal.  相似文献   

4.
The surface plasmon polariton (SPP) coupling and enhancement in silver nanowire–nanoantenna structure is proposed and simulated by using finite difference time domain method. The results demonstrate that three-arm antenna can effectively enhance the coupling efficiency at the incident end and the SPP field intensity at the emission end. The enhancement factor, which is defined as the ratio of the SPP field intensity at the emission end with and without the three-arm antenna, for the various antenna arm lengths and incident wavelengths under different incident angles are calculated. The suggested structure can be served as an enhanced plasmonic waveguide for the nanophotonic and plasmonic circuits in the future.  相似文献   

5.
The excitation of surface plasmon polariton (SPP) at interface of a metal and an ambichiral sculptured thin film was theoretically investigated in the Kretschmann configuration using the transfer matrix method. The dependence of SPP modes for a P polarization plane wave on the incident angle of light and the angle of rise of nanocolumns of ambichiral dielectric medium was reported. We found that multiple SPP modes are excited at the interface of metal and ambichiral dielectric medium. The results of phase speed as a function of pitch showed only that a SPP mode can be excited at all pitches.  相似文献   

6.
In this paper, a plasmonic-photonic nanostructure has been introduced for efficient unidirectional coupling of free-space radiation to surface plasmon polariton (SPP) waves under normal illumination on a subwavelength slit. The structure consists of a conventional metallic slit-groove nanostructure integrated with a plasmonic waveguide to support SPP waves along the desired direction with a remarkable lateral confinement. The unidirectional coupling is achieved by using an integrated plasmonic distributed reflector designed under Bragg condition. This reflector basically distributes part of the light coupled through the slit into the SPP modes of the waveguide. Numerical simulations show that up to 26 % of the normally incident light couples to the transversely localized field of the surface plasmon. In addition, the ratio of mode current density of the surface plasmon, launched in the desired direction, to that in the opposite direction can reach about 23 times. This structure shows a 2.5-fold improvement in coupling efficiency relative to a standard slit-groove structure. Also, the transmission distance for the new nanostructure is shown to be more than 8 times greater than that of the standard nanostructure.  相似文献   

7.

This paper reports the excitation of surface plasmon polaritons (SPPs) and associated plasmonic band gap (PBG) while using TM plane wave interacting with 1D metallic grating on higher refractive index GaP substrate. A simple method is introduced to estimate the PBG which is crucial for many plasmonic devices. The PBG is estimated by measuring the transmission spectra obtained through the plasmonic grating structures when slit width is varied while periodicity and the thickness of the gold (Au) film remained fixed. The PBG is observed for the grating devices whose slit width is less than one third of the periodicity which is caused by the presence of a higher plasmonic mode. The PBG is absent for the grating device whose slit width is slightly less than half and greater than one third of the periodicity. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in turn couple more incident energy to the SPPs. Far-field modelling results also support the results obtained through experiment.

  相似文献   

8.

Surface plasmon polariton (SPP) waves are the most extensively studied waves among various types of surface waves because they are easy to excite and have been used in many optical applications particularly for plasmonic communication, sensing, and harvesting solar energy. In all these applications, especially on-chip plasmonic communication, scattering can be an important issue to deal with. Therefore, this paper aimed to theoretically inspect the scattering pattern of SPP waves from a perfect electric conductor (PEC) cylindrical scatterer. The cylindrical wave approach is used to solve the scattering problem by a cylindrical object placed below a metallic layer. The scattering is investigated thoroughly by changing the size of the scatterer and its distance from the interface along which the SPP wave is excited. As the size of the scatterer increases, the scattering increases significantly. On the other hand, when the distance of the scatterer from the interface is increased, the scattered field becomes small. Two-dimensional field maps are produced for the incident angle at which SPP is excited. Numerical results are also presented for other incident angles to make a comparison. Furthermore, the forward and backward far-fields are significantly enhanced if the SPP wave is scattered in comparison with when the SPP wave is not present.

  相似文献   

9.
Formation mechanism of laser-induced spontaneous periodic nanostructures in thin light-sensitive AgCl waveguide films, doped by silver nanoparticles, is studied. It is found that the initial size, geometry, and surface coverage parameters of Ag nanoparticles instate preconditions for the nanostructure formation. These parameters play essential roles in coupled nanoplasmon excitation in silver nanoclusters, which in turn influences scattering of the incident light from the silver clusters. Some parts of the scattered light propagate as waveguide modes in the film and interference with the incident light. Afterward, migration of the Ag nanoparticles into the minima of the interference pattern forms the nanostructure. Simultaneously, excitation of coupled nanoplasmons in the neighboring clusters enhances the scattered light intensity. It is observed that longer exposure results in destruction of the formed nanostructures, because of creation of electrical joint between agglomerated clusters in the interference pattern’s minima, which leads to weakening of the TE mode excitation and, consequently, domination of the Gaussian profile of the incident light. This leads to the deceleration of the self-organized nanostructure development, growth rate, and quality. We have found that competition between the Gaussian profile of the incident laser field and the interference field causes a finally saturating oscillatory behavior of the self-organizing process.  相似文献   

10.
This paper reports the successful excitation of surface plasmon polaritons (SPPs) through 1D metallic grating on higher refractive index GaP substrate. Coupling efficiency (η) of a free-space transverse-magnetic (TM) plane-wave mode into a SPP mode is crucial for many plasmonic devices. This η predominantly depends on the fabrication (milling) parameters and the factors (under- and over-milling) affecting the η is investigated experimentally and numerically. First of all, η is estimated by measuring the transmission spectra obtained through the plasmonic grating structures by varying the slit width (a) for a fixed period (Λ) and the thickness (t) of the gold (Au) film in which the grating is formed. The wave vector of the incident light is tuned to match the wave vector of the SPP, to get maximum η. For an optimum Au film thickness, a slit width of half of the periodicity of 770 nm in the grating device yields a maximum η. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in-truns couple more incident energy to the SPPs. Moreover, over-milling results in decreased η where the crystalline plane of the substrate is disturbed. Finite element method (FEM) in COMSOL modeling is used to understand the underlying physics. This study is very useful for the development of the device application in real word.  相似文献   

11.
A controllable nanosized light source based on nonlinear interaction of light and a semiconductor nanowire is proposed. Surface plasmon polariton (SPP) waves with different frequencies propagate along the upper and lower surfaces of a truncated metallic film and are scattered at its end face. A nanowire, in that vicinity, is pumped by the scattered light, and new harmonics are generated via second-order nonlinear optical effects. Green's function surface integral equation method is exploited to numerically calculate the electric field, the magnetic field, and the power of the generated frequency components. Results show that the power of the generated harmonics depends on the position and radius of the nanowire, thickness of the metallic film, as well as the wavelength of the incident SPP waves. On the other hand, by controlling the phase difference between incident SPP waves having the same frequencies, it is possible to manipulate the electric field pattern and also to change the power of the generated harmonics.  相似文献   

12.
Interaction behavior between surface plasmon polaritons (SPPs) and Hankel-distributed diffracted waves (DWs) on a silver concentric circular grating film is studied using a rigorous coupled-wave technique for circular structure. It is shown that the numerical technique reveals the excitation characteristics of SPPs in the circular metal grating as well as provides an accurate calculation of SPP intensities for further optimization designs. Results show that the SPPs can be excited by various DWs through the control of wavelength and angle of the incident light. The most efficient excitation of SPPs from this circular metal grating structure can be obtained from the +1st-order DW under a normal incidence with wavelength close to the grating period, and the optimal thickness and duty cycle of the grating are found to be 370 and 0.5 nm, respectively. It is shown that the optimized intensity of SPPs excited from circular metal grating can be higher than that from strip metal grating by over one order of magnitude.  相似文献   

13.

The excitation of surface plasmon polaritons (SPPs) through one-dimentional (1D) metallic (Au) grating on higher refractive index -GaP substrate is investigated. Such grating devices find potential applications in real world, only if the coupling efficiency (η) of a free-space transverse-magnetic plane-wave into a SPPs mode is maximum. A simple and robust technique is used to estimate the η, by simply measuring the transmission through the grating while varying slit width (a) but period (Λ) and the thickness (t) remain fixed. When the wave vector (k 0 ) of the incident light is matched to that of SPP, highest η is achieved. It is found that Λ/3 < a < Λ/2 yields a maximum η where the intermediate scattering couples more incident energy to SPPs. These gratings are designed in such a way that they support only the fundamental plasmonic mode yielding higher η. Scanning near-field optical measurements also confirm and corroborate the observations of far-field and near-field modeling (COMSOL multiphysics) results.

  相似文献   

14.

The phenomenon of extraordinary optical transmission (EOT) due to its advantages has been considered by researchers in various applications, and in recent years, many efforts have been made to engineer these structures to get the best possible response for desired applications. In this work, the optical properties of novel binary gold nanohole arrays are investigated theoretically. We engineered the optical response of the system by adjusting the ratio of contribution of surface plasmon polariton (SPP) to localized surface plasmon resonance (LSPR) through the manipulation of the geometrical properties. The changes in the topology of this nanohole array affected the intensity and the wavelength of transmission peaks. The sensitivity of the optical response to the refractive index was also investigated. The designed structure is a good candidate for use as a polarization-independent optical label-free sensor.

  相似文献   

15.
We demonstrate a type of confined nanosource based on surface plasmon band-gap structure consisting of a nanocavity surrounded by grooves. A single, localized, and non-radiating central peak is obtained and can be used as a nanosource. The characteristics of the surface plasmon polariton (SPP) field in the vicinity of the structures with different geometrical parameters are investigated experimentally. A confined central peak is obtained in the nanocavity. The full width at half maximum of the central peak is beyond the diffraction limit and changes little during 600 nm distance away from the sample surface. With the modifications of the geometrical parameters, the central peak intensity can be enhanced and the sidelobes can be suppressed. The physical origin of the enhancement and the surface-sensitivity is explored theoretically. These phenomena demonstrate the abilities of the structures to collect the electromagnetic field and to tailor the SPP field profile. This type of SPP-based nanosource is promising to be applied in near-field imaging, data storage, optical manipulation, and localized spectrum excitation, and has potential applications in nano-photonics devices based on SPPs.  相似文献   

16.
We have theoretically investigated the unidirectional surface plasmon polariton (SPP) excitation on single slits with oblique backside illumination. An aperture diffraction method is devised, from which the conditions of slit width and beam illumination angle for the unidirectional SPP excitation are formulated analytically. The derived unidirectional conditions are validated with vectorial electromagnetic simulation using the rigorous coupled wave analysis.  相似文献   

17.
From first-principles computation, we reveal that optical bifacial transmission can be induced within an asymmetric metallic subwavelength structure. This phenomenon can be explained by a concrete picture in which the intensity of the driving forces for surface plasmon or charge wave is asymmetric for the two incident directions. Two distinguished different numerical methods, finite difference time domain (FDTD), and rigorous coupled wave analysis (RCWA) are utilized to verify that optical bifacial transmission can exist for linear plasmonic metamaterial. Previous results are also reviewed to confirm the physical meaning of optical bifacial transmission for a planar linear metamaterial. The incident light can provide direct driving forces for surface plasmon in one direction. While in the opposite direction, forces provided by the light diffraction are quite feeble. With the asymmetric driving forces, the excitation, propagation, and light-charge conversion of surface plasmon give the rise of bifacial charge-oscillation-induced transmission. In periodic a structure, the excitation of surface plasmon polariton can lead to the spoof vanish of such phenomenon. The transmissions for two incident directions get the same in macroscopic while the bifacial still exists in microscale.  相似文献   

18.
A qualitative model explaining the extraordinary optical transmission of terahertz (THz) radiation through two-dimensional periodic arrays of subwavelength apertures is presented. Systematic terahertz time-domain spectroscopy studies have been undertaken to investigate the combined effects of the lattice arrangement, aperture shape, area and aspect ratio on the transmission properties of electroformed copper arrays. The extensive results presented provide a unified example of how aperture geometry dictates SPP activity. The novel fabrication method creates exemplary peak resonances, allowing the onset of surface plasmon polariton (SPP) decoupling to be distinguished from direct transmission. Furthermore, we provide the first evidence as to how the temporal properties of SPPs are governed by the single-cycle THz pulse. The time-of-flight model presented can not only be used to explain the results observed in both the presented and previously published experiments but serves as a method to engineer specific resonances for sensor applications.  相似文献   

19.
Tu  Qing  Liu  Jianxun  Ke  Shaolin  Wang  Bing  Lu  Peixiang 《Plasmonics (Norwell, Mass.)》2020,15(3):727-734

We investigate the excitation of surface plasmon polaritons (SPPs) using a metallic nanoaperture array illuminated by circularly polarized Laguerre-Gaussian (LG) vortex beams. The direction of SPP excitation is tunable by changing the circular polarization and topological charge of LG beams. The left- or right-handed circular polarization determines SPP propagation on either side of the nanoaperture array. Furthermore, varying the topological charge of LG beam will result in beam splitting of SPPs. We also utilize a composite nanoaperture array with different periods to achieve unidirectional excitation of SPPs. The study provides an interesting approach to control the excitation direction of SPPs and may find great applications in SPP generators and optical switches.

  相似文献   

20.
In allusion to special modes supported by surface plasmon polariton (SPP) waveguides, explicit expression for mode coupling coefficient which plays a central role in coupled mode theory is firstly redefined by adding the longitudinal electric field component. The mode coupling coefficients calculated by the proposed formula improve greatly compared with the coupled mode theory suited to conventional optical waveguides, and reasonable explanations from the point of view of physics and mathematics have been given. Afterwards, the coupling lengths, the transmission lengths, the normalized power exchanges, and the cross talk performances of adjacent parallel SPP waveguides with varying waveguide separation distances D and waveguide lengths L are investigated at telecom wavelength. The results are encouraging as they indicate that the coupled mode theory is developed in a self-consistent manner by retaining the longitudinal electric field component in the derivation and neglecting it only when the waveguides structure satisfies the weakly guiding situations. As a result, the new mode coupling coefficient formula for SPP waveguides considered in this paper is an important complement in the theory of SPP waveguides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号