首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Plasmonics - In this study, we achieved an enhancement of the transmission surface plasmon resonance (T-SPR) intensity by depositing silver nanoparticles (AgNPs) onto a gold grating substrate. The...  相似文献   

2.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

3.
Silica particles of ~800 nm size were functionalized using 3-amino propyl triethoxysilane molecules on which gold particles (~20 nm size) were deposited. The resulting particles appeared to form speckled SiO2@Au core–shell particles. The surface roughness, along with hot spots, due to nanogaps between the gold nanoparticles was responsible for the enhancement of the Raman signal of crystal violet molecules by ~3.2?×?107 and by ~1.42?×?108 of single-wall carbon nanotubes. It has also been observed that the electromagnetic excitation near surface plasmon resonance (SPR) of core–shell particles is more effective than off resonance SPR excitation.  相似文献   

4.
We demonstrate directional enhanced fluorescence emission from fluorophores located above gold wire gratings. In contrast to previous studies on corrugated films, efficient coupling was recorded for multiple plasmon modes associated with both the active and substrate side of the wires. This difference is likely due to the subtle differences in how light interacts with corrugated films versus metal films with periodic subwavelength slots. For corrugated films, coupling between modes on opposite sides of the grating are out of phase, and therefore plasmon modes on the opposite side of the grating are only weakly excited. For wire gratings, transmission and reflection features have been modeled well with a dynamical diffraction model that includes surface plasmons, which allows for efficient coupling to surface plasmon modes on both sides of the grating. We also compared the two mechanisms for fluorescent enhancement, namely the intense electromagnetic field associated with surface plasmons and excited fluorophores radiating via surface plasmon modes. We found the latter mechanism clearly dominant.  相似文献   

5.
In the present study, gold nanoparticles (AuNPs) synthesis was carried out by using a rare bacteriophage which is morphologically similar to 7–11 phages of the C3 morphotype of tailed phage belonging to Podoviridae family as green route. Effect of various physiological parameters like pH, temperature and concentration of gold chloride salt on AuNPs synthesis was studied. The reaction mixtures have shown vivid colours at various physiological parameters. Phage inspired AuNPs were further characterized by using different techniques such as UV–Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and dynamic light scattering (DLS). DLS study revealed synthesis of various sizes of AuNPs in the range of 20–100 nm. SEM studies revealed synthesis of varied shaped AuNPs, viz., spheres, hexagons, triangles, rhomboids and rectangular etc. The presence of Au in the nanostructures was confirmed by EDS. The XRD pattern reflects the crystalline nature and nano size of AuNPs. These phage inspired AuNPs showed anti-bacterial activity against different bacterial pathogens. Anti-biofilm activity of AuNPs was evaluated on a glass slide. It was noticed that at 0.2 mM concentration of these AuNPs about 80% of biofilm formation by Pseudomonas aeruginosa, a human pathogen was inhibited. Thus, the phage inspired AuNPs synthesis could be potential therapeutic agents against human pathogens.  相似文献   

6.
Plasmonic gold films (PGF) prepared by vacuum deposition of gold onto quartz slides possess unique property to enhance electromagnetic signal in the near field. Spectral tuning of PGF’s plasmon band to resonance with the electronic spectra of adsorbed molecules provides selective enhancement of fluorescence or surface-enhanced Raman scattering in the far field. Plasmon-enhanced fluorescence (PEF) of mitoxantrone (mitox) as a function of the distance between gold surface and adsorbed molecules for different polarization and incidence angle of exciting light is analyzed in this work. Spectrophotometric data reveal that probability of localized plasmon excitation in gold grains increases with growth of incidence angle for s-polarized and decrease for p-polarized excitation. This fact correlates well with oblate shape of gold particles detected by Atomic force microscope. However, the fluorescence intensity of dyes deposited at fixed distance from gold surface increase with angle of incidence of p-polarized light more noticeably than for s-polarized one. Nevertheless, the behavior of mitox PEF signal upon p-polarized laser excitation and different angle of incidence are similar in appearance to such phenomenon as selective photoelectric effect. According to this observation, the near-field interactions between plasmons and molecule as possible mechanism of PEF is discussed.  相似文献   

7.
He  Yi  Liang  Yun  Song  Hu 《Plasmonics (Norwell, Mass.)》2016,11(2):587-591

Creatinine-functionalized AuNPs (CreAuNPs) were prepared via a facile one-pot reaction of sodium borohydride and the mixture solution of gold(III) chloride trihydrate and creatinine. The morphology and surface state of as-prepared CreAuNPs were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. All the results demonstrated that CreAuNPs were spherical with an average diameter of about 4.2 nm, and creatinine existed on the surface of AuNPs via Au-N interaction. The as-prepared CreAuNPs exhibited a weak surface plasmon resonance (SPR) absorption owing to their small size, while the addition of Ag+ could induce the aggregation of spherical CreAuNPs, producing a strong SPR absorption and apparent color change from colorless to purple owing to the surface plasmon coupling. On this basis, a colorimetric assay for Ag+ was established. The assay could selectively detect Ag+ as low as 1 μM with a good linearity in the range of 5–40 μM. Additionally, the assay was successfully applied to the determination of Ag+ in tap water, lake water, and river water samples.

  相似文献   

8.
Malathion is one of the most commonly used organophosphorous pesticides worldwide. Gold nanoparticles can be used for the degradation and removal of 10 ppm malathion. The morphology of the prepared gold nanoparticle is characterized by transmission electron microscopy. Photodegradation of malathion on irradiation to different light sources was monitored using different tools such as UV–visible spectra and high-performance liquid chromatography. Photodegradation rate of malathion was enhanced in the presence of gold nanoparticles as a result of surface plasmon phenomena.  相似文献   

9.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

10.
The current study aimed at developing gold nanoparticles (AuNPs) using the aqueous extract of the medicinal plant Commiphora wightii. The phytosynthesized gold nanoparticles (Cw@AuNPs) were evaluated for their anticancer activity against MCF-7 breast cancer cell model. The formation of AuNPs by Commiphora wightii leaf extract was confirmed by UV–vis spectra where their surface plasmon resonance was found at 533 nm. Further characterization of Cw@AuNPs was done by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, and fourier-transform infrared spectroscopy (FTIR) analysis. In vitro anticancer potential of thus obtained AuNPs was evaluated against MCF-7 and where the IC50 was found to be 66.11 μg/mL Further, apoptotic studies were carried out using ethidium bromide dual staining, DNA fragmentation, comet assay, and flow cytometry studies. Results revealed that Cw@AuNPs at higher concentration significantly increased the apoptotic cells when compared to control cells. Cell cycle analysis of MCF-7 cells confirmed the cell cycle arrest at G2/M phase. These results demonstrate that the biosynthesized Cw@AuNPs appear to be promising for therapeutical applications against breast cancer.  相似文献   

11.
High-resolution electron energy loss spectroscopy was used to investigate the surface plasmon dispersion in (111)-oriented Au films grown on Cu(111). The measured dispersion of the plasmon mode was positive, as found for Ag. The centroid of the induced charge associated to the plasmon field lies well inside the jellium edge. The damping relation of the Au surface plasmon presented a critical wave vector of 0.11 Å?1. For higher values of the parallel momentum transfer, the line width of Au surface plasmon considerably increased as a consequence of the opening of a new decay channel via single-particle transitions.  相似文献   

12.
Gold–silver core–shell triangular nanoprisms (Au/AgTNPs) were grown onto transparent indium tin oxide (ITO) thin film-coated glass substrate through a seed-mediated growth method without using peculiar binder molecules. The resulting Au/AgTNPs were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, UV–vis spectroscopy, and cyclic voltammograms. The peak of dipolar plasmonic resonance was located at near infrared region of ~700 nm, which showed the refractive index (RI) sensitivity of 248 nm/RIU. Moreover, thin gold shells were electrodeposited onto the surface of Au/AgTNPs in order to stabilize nanoparticles. Compared with the Au/AgTNPs, this peak of localized surface plasmon resonance (LSPR) was a little red-shift and decreased slightly in intensity. The refractive index sensitivity was estimated to be 287 nm/RIU, which showed high sensitivity as a LSPR sensing platform. Those triangular nanoprisms deposited on the ITO substrate could be further functionalized to fabricate LSPR biosensors. Results of this research show a possibility of improving LSPR sensor by using core–shell nanostructures.  相似文献   

13.
A substrate for surface-enhanced resonance Raman spectroscopy (SERRS) in the near-ultraviolet (UV) range is presented, extending the potential window for electrochemical applications. Silver nanoparticles were synthesized exhibiting a localized surface plasmon resonance at the excitation wavelength and adsorbed onto a template-stripped silver substrate, whereby the number of particles per unit area was controlled by the adsorption time. Any attempt to employ spectro-electrochemistry on these surfaces, however, was hampered by the anodic dissolution of silver at potentials higher than 300 mV vs. standard hydrogen electrode (SHE). In order to extend the potential window for electrochemistry and still being able to use the resonance effect from silver nanoparticles, a 5-nm thick gold layer was sputtered on top of the Ag/AgNPs substrate. Cyclic voltammetry measurements of cytochrome c (cc) were carried out showing that the electrochemical behavior of gold can extend the potential range of the composite surface significantly. Furthermore, a potentiostatic titration of cc on this substrate by SERRS demonstrated that the resonance Raman effect of silver nanoparticles with the Soret band of the heme had been maintained in the presence of the gold adlayer. The positions of the plasmon resonances measured by reflection spectroscopy method were confirmed by finite-difference time-domain simulations. Gold is the optimal substrate for electrochemistry, whereas silver is the optimal material for plasmonic applications. Combining both metals gives us a surface with good performance for electrochemical applications as well as an enhancement effect sufficient to study redox-active biomacromolecules such as cc.  相似文献   

14.

This paper reports on a systematic study of the plasmonic properties of periodic arrays of gold cylindrical nanoparticles in contact with a gold thin film. Depending on the gold film thickness, it observes several plasmon bands. Using a simple analytical model, it is able to assign all these modes and determine that they are due to the coupling of the grating diffraction orders with the propagating surface plasmons travelling along the film. With finite difference time domain (FDTD) simulations, it demonstrates that large field enhancement occurs at the surface of the nanocylinders due to the resonant excitation of these modes. By tilting the sample, it also observes the evolution of the spectral position of these modes and their tuning through nearly the whole visible range is possible. Such plasmonic substrates combining both advantages of the propagative and localised surface plasmons could have large applications in enhanced spectroscopies.

  相似文献   

15.
In the present study, we synthesized silver and gold nanoparticles with a particle size of 10–20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436–531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150–180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM–EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10–20 nm) and AuNPs (5–20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens.  相似文献   

16.
This paper reports the successful excitation of surface plasmon polaritons (SPPs) through 1D metallic grating on higher refractive index GaP substrate. Coupling efficiency (η) of a free-space transverse-magnetic (TM) plane-wave mode into a SPP mode is crucial for many plasmonic devices. This η predominantly depends on the fabrication (milling) parameters and the factors (under- and over-milling) affecting the η is investigated experimentally and numerically. First of all, η is estimated by measuring the transmission spectra obtained through the plasmonic grating structures by varying the slit width (a) for a fixed period (Λ) and the thickness (t) of the gold (Au) film in which the grating is formed. The wave vector of the incident light is tuned to match the wave vector of the SPP, to get maximum η. For an optimum Au film thickness, a slit width of half of the periodicity of 770 nm in the grating device yields a maximum η. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in-truns couple more incident energy to the SPPs. Moreover, over-milling results in decreased η where the crystalline plane of the substrate is disturbed. Finite element method (FEM) in COMSOL modeling is used to understand the underlying physics. This study is very useful for the development of the device application in real word.  相似文献   

17.
《Process Biochemistry》2010,45(7):1065-1071
In this paper we have reported the green synthesis of silver (AgNPs) and gold (AuNPs) nanoparticles by reduction of silver nitrate and chloroauric acid solutions, respectively, using fruit extract of Tanacetum vulgare; commonly found plant in Finland. The process for the synthesis of AgNPs and AuNPs is rapid, novel and ecofriendly. Formation of the AgNPs and AuNPs were confirmed by surface plasmon spectra using UV–Vis spectrophotometer and absorbance peaks at 452 and 546 nm. Different tansy fruit extract concentration (TFE), silver and gold ion concentration, temperature and contact times were experimented in the synthesis of AgNPs and AuNPs. The properties of prepared nanoparticles were characterized by TEM, XRD, EDX and FTIR. Finally zeta potential values at various pH were analyzed along with corresponding SPR spectra.  相似文献   

18.
The optical properties of individual noncontinuous shells with different gold coverage are investigated by the single-particle dark field scattering measurements and single-particle surface-enhanced Raman scattering (SERS) measurements at different excitation wavelengths. By controlling the growth of gold seeds, multi-metallic nanogaps/crevices with different optical responses are assembled on silica mesospheres forming noncontinuous shells that can be confirmed through the transmission electron microscope images. We find the surface plasmon resonance of single shell red-shifts from 510 to 680 nm with the increase of gold coverage. At the excitation of 532 and 785 nm, the best enhancements about 2.0?×?105 and 1.1?×?107 are obtained on spheres with ~60 and 83 % gold coverage, respectively. The weak polarization-dependent SERS indicates that the enhancement is from the multi-gaps on single noncontinuous shell. This optical tunable and SERS active noncontinuous gold shell can be applied in biosensing, ultra trace detection, and molecule analysis needing multi-wavelengths excitation.  相似文献   

19.

The influence of TiO2 coating on resonant properties of gold nanoisland films deposited on silica substrates was studied numerically and in experiments. The model describing plasmonic properties of a metal truncated nanosphere placed on a substrate and covered by a thin dielectric layer has been developed. The model allows calculating a particle polarizability spectrum and, respectively, its surface plasmon resonance (SPR) wavelength for any given cover thickness, particle radius and truncation parameter, and dielectric functions of the particle, the substrate, the coating layer, and the surrounding medium. Dependence of the SPR position calculated for truncated gold nanospheres has coincided with the measured one for the gold nanoisland films covered with titania of different thicknesses. In the experiments, gold films with thickness of 5 nm were deposited on a silica glass substrate, annealed at 500 °C to form nanoislands of 20 nm in diameter, and covered with amorphous titania layers using atomic layer deposition technique. The resulting structures were characterized with scanning electron microscopy and optical absorption spectroscopy. The measured dependence of the SPR position on titania film thickness corresponded to the one calculated for truncated sphere-shaped nanoparticles with the truncation angle of ~50°. We demonstrated the possibility of tuning the SPR position within ~100 nm range by depositing to 30 nm thick titania layer.

  相似文献   

20.
We investigate plasmon excitations within a regular grating of double-layered gold/insulator nanoparticles in the infrared and visible spectral region. Provided a flat gold film as substrate, strong coupling between the localized surface plasmon modes and their image-like excitations in the metal is observed. The interaction results in a strong red shift of the plasmon mode as well as the splitting of the modes into levels of different angular momenta, often referred to as plasmon hybridization. The diameters of the nanoparticles are designed in a way that the splitting of the resonances occurs in the spectral region between 0.1 and 1 eV, thus being accessible using an infrared microscope. Moreover, we investigated the infrared absorption signal of gratings that contain two differently sized nanoparticles. The interaction between two autonomous localized surface plasmon excitations is investigated by analyzing their crossing behavior. In contrast to the interaction between localized surface plasmons and propagating plasmon excitations which results in pronounced anticrossing, the presented structures show no interaction between two autonomous localized surface plasmons. Finally, plasmon excitations of the nanostructured surfaces in the visible spectral region are demonstrated through photographs acquired at three different illumination angles. The change in color of the gratings demonstrates the complex interaction between propagating and localized surface plasmon modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号