首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.  相似文献   

2.
Yan  Xicheng  Wang  Tao  Han  Xu  Xiao  Shuyuan  Zhu  Youjiang  Wang  Yunbo 《Plasmonics (Norwell, Mass.)》2017,12(5):1449-1455

A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.

  相似文献   

3.
In this paper, we employ an antireflective coating which comprises inverted π-shaped metallic grooves to manipulate the behaviour of a transverse-magnetic (TM)-polarised plane wave transmitted through a periodic nanoslit array. At normal incidence, such scheme cannot only retain the optical curtain effect in the output region but also generate the extraordinary transmission of light through the nanoslits with the total transmission efficiency as high as 90 %. Besides, we show that the spatially invariant field distribution in the output region as well as the field distribution of resonant modes around the inverted π-shaped grooves can be reproduced immaculately when the system is excited by an array of point sources beneath the inverted π-shaped grooves. Furthermore, we investigate the influence of centre groove and side-corners of the inverted π-shaped grooves on suppressing the reflection of light, respectively. Based on our work, it shows promising potential in applications of enhancing the extraction efficiency as well as controlling the beaming pattern of light emitting diodes.  相似文献   

4.
Contact guidance was studied by light, scanning (SEM) and transmission electron microscopy (TEM) in cultures of human gingival fibroblasts cultured on grooved surfaces. The grooves were originally produced in silicon wafers by micromachining, a process which is based on the methods used to fabricate microelectronic components, and the grooved surfaces were then replicated in Epon. Micromachining enables precise control of groove depth, groove spacing, and groove shape to be obtained. In silicon wafers with appropriate crystal orientation, a second smaller set of grooves, called the minor grooves, is found on the floor of the major grooves. The minor grooves are oriented at a 54 degree angle to the major grooves, so that cells cultured on such surfaces are concurrently exposed to grooves of different dimensions which direct cell migration in different directions. Marked fibroblast alignment with the major grooves was observed both within the grooves and in the intervening flat ridges between the grooves. In addition, shallow and closely spaced grooves in epon or titanium-coated polymer or silicon were also capable of orienting fibroblasts. Although the minor grooves were able to orient fibroblasts in the absence of any other orienting influence, when fibroblasts were concurrently exposed to major and minor grooves the cells aligned themselves with the major grooves. TEM showed that the cellular filamentous cytoskeletal elements reflected the orientation of the cell as a whole. Fibroblasts on grooved substrata appeared to have more filopodia and to round up more frequently than fibroblasts cultured on flat substrata. It is suggested that both the mechanical properties of the cytoskeleton as well as the durability of the cellular attachment to groove edges may play a role in the contact guidance effected by grooved surfaces produced by micromachining.  相似文献   

5.
Wang  Jicheng  Niu  Yuying  Liu  Dongdong  Hu  Zheng-Da  Sang  Tian  Gao  Shumei 《Plasmonics (Norwell, Mass.)》2018,13(2):609-616

We propose a plasmonic structure based on the metal-insulator-metal waveguide with the side-coupled isosceles trapezoid cavities. Both of the structures based on the side-coupled trapezoid cavities separated or connected with waveguides can realize the plasmon-induced transparency (PIT). By adjusting the structure parameters, the off-to-on PIT response can be tunably achieved. The coupled mode theory (CMT) method is used to study the PIT phenomenon and explain the transmission characteristics. This work may provide a potential way for designing highly integrated photonic devices.

  相似文献   

6.
This paper proposes a compact plasmonic structure that is composed of a metal-insulator-metal (MIM) waveguide coupled with a groove and stub resonators, and then investigates it by utilizing the finite element method (FEM). Simulation results show that the interaction between the local discrete state caused by the stub resonator and the continuous spectrum caused by the groove resonator gives rise to one of the two Fano resonances, while the generation of the other resonance relies only on the groove. Meanwhile, the asymmetrical linear shape and the resonant wavelength can be easily tuned by changing the parameters of the structure. By adding stubs on the groove, we excited multiple Fano resonances. The proposed structure can serve as an excellent plasmonic sensor with a sensitivity of 2000 nm/RIU and a figure of merit of about 3.04?×?103, which can find extensive applications for nanosensors.  相似文献   

7.
Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators 1,2. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials.Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides 3, asymmetric split-ring resonators 4, and photonic band gap structures integrated into parallel-plate waveguides 5. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc.The sensor design we use here is based on a simple parallel-plate waveguide 6,7. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove 6,8. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index 9.Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves 10. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index.  相似文献   

8.
A novel metal-insulator-metal (MIM) plasmonic waveguides structure, which is composed by stub waveguide with nanodisk and Fabry-Perot (F-P) resonator, has been proposed and numerically simulated with the finite-difference time-domain (FDTD). Based on the three-level system, the extreme destructive interference between bright and dark resonators gives rise to the distinct plasmonically induced absorption (PIA) response with the abnormal dispersion and novel fast-light feature. Simultaneously, the dramatic double plasmonically induced transparency (PIT) effect with slow-light characteristic can also be achieved in the system. The relationship between the transmission characteristics and the geometric parameters is studied in detail. By optimum design, the modulation depth of the PIA transmission spectrum of 90 % with 0.145 and 0.14 ps fast-light effect can be gained simultaneously, and the peak transmissivity of the double PIT system of 75.2 and 72.8 % with ?0.38 ps slow light-effect can be achieved. The simulated transmission features are in agreement with the temporal-coupled mode theory (CMT). The characteristics of the system indicate an important potential application in integrated optical circuits such as slow-light and fast-light devices, high-performance filter, and optical storage.  相似文献   

9.
This study investigates whether the resonant tunneling intensity of one groove of a metal film with periodic grooves on both surfaces can be enhanced by adjusting the relative permittivity of adjacent grooves of the emitting plane. As the relative permittivity of the side grooves of the emitting plane increases, the emission intensity of the center groove first increases but eventually saturates. This property is mainly attributable to concentration of incident intensity in the center groove of the incident plane. Larger numbers of lumped grooves or larger distances between two adjacent grooves increases the intensity of light entering the system, which ultimately increases the intensity of emitted light. This enhanced emission intensity achieved by resonant tunneling effects has potential applications in future plasmonic transistor designs.  相似文献   

10.
In this paper, a surface plasmon polarition filter based on a side-coupled crossbeam square-ring resonator is presented and the transmission characteristics of the filter are analyzed by using the finite difference time domain method. The simulation results indicate that the proposed resonator supports multiple resonant modes, and these resonant modes can be adjusted all together by varying the length and refractive index of the outer square ring or partially adjusted by changing the width and refractive index of the crossbeam. By adding two coupled waveguides to the structure, we further demonstrate that a multiple wavelength download filter can be achieved via different coupled waveguides. The proposed structure has potential applications in plasmonic integrated circuits.  相似文献   

11.
Surface plasmon polariton (SPP) waveguides formed by coupled plasmonic cavities on metallic Moire surfaces have been investigated both experimentally and numerically. The Moire surface, fabricated by interference lithography, contains periodic arrays of one-dimensional cavities. The coupling strength between the cavities has been controlled by changing the periodicities of the Moire surface. The ability to control the coupling strength allows us to tune the dispersion and the group velocity of the plasmonic coupled cavity mode. Reflection measurements and numerical simulation of the array of SPP cavities have shown a coupled resonator type plasmonic waveguide band formation within the band gap. Coupling coefficients of cavities and group velocities of SPPs are calculated for a range of cavity sizes from weakly coupled regime to strongly coupled regime.  相似文献   

12.
We proposed a plasmonic nanosensor with an ultra-high sensitivity based on groove and ring resonator. Simulation results show that these sharp Fano profiles originate from the interference between the groove and ring resonator. The profile can be easily tuned by changing the parameters of the structure. Moreover, we introduce a new way to achieve multiple Fano resonances through independent processes by adding a side-coupled stub cavity, and the Fano resonances can be tuned independently. These characteristics offer flexibility in the design of the devices. This nanosensor yields an ultra-high sensitivity of ~2000 nm/RIU, which is rarely seen in the previous report. Our structures may have potential applications for nanosensors, slow light, and nonlinear devices in highly integrated circuits.  相似文献   

13.
Chen  Ying  Zhang  Min  Cao  Jinggang  Xiao  Chunyan  Zhu  Qiguang 《Plasmonics (Norwell, Mass.)》2021,16(5):1719-1728

A structure of double-baffle metal-dielectric-metal (MDM) waveguide coupled cascaded square cavity is designed based on the transmission characteristics of the surface plasmon polaritons. Combined with coupled mode theory (CMT), the mechanism of multiple Fano resonances generated by this structure is analyzed qualitatively. The wide-band spectrum mode generated by the F-P resonant cavity and the four narrow-band spectrum modes produced by the cascaded square resonant cavities interfere with each other. Moreover, an new scheme of introducing a semiconductor material InGaAsP into this structure is designed for improving the transmittance of the Fano peaks. Analyze the influence of refractive indexes of the test objects on sensing performance by finite element method (FEM) quantitatively, which shows the improved structure can achieve the independent tuning of multiple Fano resonances. Combining with 96-well microplate technology, the structure can achieve the detection of multiple different samples with high-performance simultaneously. It is believed that the proposed structure has a strong reference significance for the design of optical micro-nanostructures for high throughput detection.

  相似文献   

14.
Wan  Ming-Li  Sun  Xiao-Jun  Song  Yue-Li  Ji  Peng-Fei  Zhang  Xiao-Peng  Ding  Pei  He  Jin-Na 《Plasmonics (Norwell, Mass.)》2017,12(5):1555-1560

Plasmon-induced transparency (PIT), an analog of electromagnetically induced transparency, originates from destructive interference of plasmonic resonators with different quality factors and brings about the extreme dispersion within the narrow transparency window, promising remarkable potential for slow light, nonlinear optics and biochemical sensors. However, sometimes a broad transmission frequency band is more desirable for other applications such as bandpass filters. In general, strong coupling between bright and dark plasmon modes in coupled resonant systems leads to wide transparency bandwidth at the PIT resonance. Based on multi-oscillator coupling theory, a metasurface structure consisting of three perpendicularly connected metallic nanobars is purposefully designed and numerically demonstrated to support broadband PIT spectral response. The near-field patterns indicate that the broadening of the transparent band results from the constructive interference of dual excitations of the single non-radiative (dark) resonator by the two radiative (bright) antennas. These results show that this scheme of bright-dark-bright mode coupling is significantly beneficial for designing filters operating over a broad frequency range.

  相似文献   

15.
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.  相似文献   

16.
A novel broadband refractive index nanosensor based on multi-interference of surface plasmon polaritons is reported. It is composed of a metallic nanoslit flanked by periodical grooves on its two sides. Extraordinary high-throughput, high-resolution, and high-sensitivity detections can be realized by observing the shift of the resonant wavelength. The sensor covers a large range of the refractive index change due to both the narrow linewidth of the single resonant peak in the broadband spectrum and the sensitive shift of the peak position withthe refractive index change. A theoretical model is developed to well predict the optical response of the sensor. An excellent linearity between the resonant wavelength and the refractive index can be achieved. The sensitivity, which is 620 nm/refractive index unit, can be further increased by tuning the period of the grooves and the high throughput; high resolution can be simultaneously achieved by adding the number of grooves.  相似文献   

17.
We report the design, fabrication, and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor >45% is demonstrated at a wavelength of 780?nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.  相似文献   

18.
Oguey C  Foloppe N  Hartmann B 《PloS one》2010,5(12):e15931

Background

The B-DNA major and minor groove dimensions are crucial for DNA-protein interactions. It has long been thought that the groove dimensions depend on the DNA sequence, however this relationship has remained elusive. Here, our aim is to elucidate how the DNA sequence intrinsically shapes the grooves.

Methodology/Principal Findings

The present study is based on the analysis of datasets of free and protein-bound DNA crystal structures, and from a compilation of NMR 31P chemical shifts measured on free DNA in solution on a broad range of representative sequences. The 31P chemical shifts can be interpreted in terms of the BI↔BII backbone conformations and dynamics. The grooves width and depth of free and protein-bound DNA are found to be clearly related to the BI/BII backbone conformational states. The DNA propensity to undergo BI↔BII backbone transitions is highly sequence-dependent and can be quantified at the dinucleotide level. This dual relationship, between DNA sequence and backbone behavior on one hand, and backbone behavior and groove dimensions on the other hand, allows to decipher the link between DNA sequence and groove dimensions. It also firmly establishes that proteins take advantage of the intrinsic DNA groove properties.

Conclusions/Significance

The study provides a general framework explaining how the DNA sequence shapes the groove dimensions in free and protein-bound DNA, with far-reaching implications for DNA-protein indirect readout in both specific and non specific interactions.  相似文献   

19.
Tactile spatial acuity on the fingerpad was measured using a grating orientation task. In this task, subjects are required to identify the orientation of square-wave gratings placed on the skin. Previous studies have shown that performance varies as a function of the width of the grooves in the gratings. In the present study, both groove width and the overall size and configuration of the contactors were varied. Sensitivity improved with wider grooves and with larger contactors. Additional measurements showed that the improved sensitivity is not the result of the increase in total area contacted, but rather is due to two other factors associated with larger contactors. One is the greater linear extent of the larger contactors. The other appears to be due to the reduction in the interference produced by the outer edge of the contactor. Specifically, as the contactor increases in size, the distance between the outer edge and the center portion of the grooves also increases. It was also shown that subjects are more sensitive to a single, continuous groove as compared with two grooves of the same total length but spatially discontinuous. Similarly, subjects are more sensitive to a contactor with a continuous groove than to a contactor in which just the end points of the groove are presented. The results are generally consistent with the results of peripheral, neurophysiological recordings. The results are discussed in terms of the way in which both spatial and intensive factors may affect sensitivity to grating orientation.  相似文献   

20.
Moss  Anthony G.  Wells  Bryan  Muellner  Lisa 《Hydrobiologia》2004,530(1-3):145-153
We describe here the food groove complex and mechanism of prey capture used by adult Mnemiopsis spp. ctenophores to obtain prey swept into the auricular grooves by feeding currents. Tentilla that emerge from the tentacular groove of the food groove complex extend into the auricular grooves and capture prey upon their sticky surfaces. The prey-laden tentilla contract and drag the prey to the edge of the transport groove, which is also part of the food groove complex. The transport groove undergoes a focal eversion to capture and transport prey orally. Focal eversion exposes the inner ciliated surface of the transport groove as it extends toward the prey. Focal eversion can be evoked by mechanical stimuli from a probe, but only if it is positioned directly over the tentacular groove. We propose that g-cilia located within the tentacular groove are mechanoreceptors whose output triggers a sensory-motor pathway that in turn everts the transport groove. The mechanosensory-motor pathway is ectodermal and sensitive to Mg2+ anesthesia, which defocuses and amplifies eversion. Tentilla are not strictly necessary for eversion to occur, because preparations lacking tentilla can still display eversion; however, they may amplify the sensory signal by interacting with g-cilia as they contract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号