首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Optical channel drop filter (OCDF) plays a key role in optical communication networks for filtering the individual wavelength among the group of channels in wavelength division multiplexing systems. There are several channel drop filters with different design mechanisms available in the literature, but those structure dimensions are not compact enough for the photonic integrated applications. Hence, in this paper, a compact and efficient OCDF is developed in the triangular lattice PC structure based on diamond-shaped photonic crystal ring resonator (PCRR) mechanism combined with micro cavity resonator (MCR). The developed OCDF is analysed for different operating wavelengths by considering the different positions of MCR around the main PCRR. Based upon the position of the MCR around PCRR, the three dropping wavelengths such as 1540 nm, 1550 nm, and 1570 nm are observed at the output waveguides with 100% dropping efficiency. Then the structural and performance parameter comparison is done between the proposed and existing structures in terms of device dimension, dropping efficiency, and quality factor. It is depicted through the results that the quality factor and the device dimension are better than that of the existing structures for 1550-nm wavelength.

  相似文献   

2.
In this paper, a surface plasmon polarition filter based on a side-coupled crossbeam square-ring resonator is presented and the transmission characteristics of the filter are analyzed by using the finite difference time domain method. The simulation results indicate that the proposed resonator supports multiple resonant modes, and these resonant modes can be adjusted all together by varying the length and refractive index of the outer square ring or partially adjusted by changing the width and refractive index of the crossbeam. By adding two coupled waveguides to the structure, we further demonstrate that a multiple wavelength download filter can be achieved via different coupled waveguides. The proposed structure has potential applications in plasmonic integrated circuits.  相似文献   

3.

The multi-wavelength selection and switching system using the hybrid plasmonic add-drop ring resonator (HPARR) for optical communication is proposed for multi-carrier super-channel-based designed. The plasmonic polariton technique applied in the ring resonator mode to the alternate waveguide interferometer switches the multi-wavelength laser emission in the various ranges. The combination of curvature-coupled plasmon ring and substances with different refractive index allows switching the multi-wavelength emission to shorter the free spectrum range (FSR) and specific wavelengths, without an applied pump signal or adjusted the ring size. It is suitable for the super-channel of wavelength division multiplex (WDM) in the future optical network.

  相似文献   

4.
High performance analogue notch filters are difficult to realize in practice. Their real time digital counterparts, when implemented on an inexpensive microprocessor with no additional hardware, also have limitations of their own. To overcome these limitations, we have developed a new type of 50 Hz notch filter with its poles close to the zeros of the transfer function 1 + Z−N. This new type of digital notch filter can be used for suppression of 50 Hz noise in the ECG. The filter is simple to design and easy to implement on most 8-bit microprocessors. It has a high execution speed, low analogue to digital noise, low recursive noise and good frequency response with no overshoot or ringing. It is capable of suppressing 50 Hz noise by at least 40 db. Its finite bandwidth of 4 Hz causes about 2% attenuation on the QRS peak, which is acceptable for almost all practical applications. One possible drawback is that multiple notches occur at higher frequencies. However, this has hardly any effect on the ECG because of the limited notch bandwidth.  相似文献   

5.
A compact plasmonic coupled-resonator system, consisting of a stub resonator and baffles in the metal–insulator–metal waveguide, is numerically investigated with the finite element method. Simulations show that sharp and asymmetric response line-shapes can occur in the system. The asymmetric line-shapes in the transmission spectra depend on the relative positions of the resonant wavelengths between the single-stub resonator and the inner resonator constructed by the baffle and the stub resonator, while the other part of the transmission spectra (except the asymmetric part) maintains the spectral features of the structure constructed by the baffles. An analytic model and a relative phase analysis based on the scattering matrix theory are used to describe and explain this phenomenon. These sharp and asymmetric response line-shapes are important for improving the nano-plasmonic devices’ performances.  相似文献   

6.
In this study, we propose a plasmonic free-space filter with dual resonance wavelength by using an asymmetric T-shaped array. The structure under the T-shaped structure forms two metal/insulator/metal cavities with different cavity length. Each cavity supports a specific resonance wavelength. A notch filter for second harmonic generation Nd:YAG laser is also proposed. The filter offers two resonance dips and low sideband. In addition, the filter properties are based on the localized surface plasmon. Therefore, the angle tolerance is extremely high. This makes the proposed structure easy to align. The proposed structure can be used in dual wavelength biosensing detection and dual wavelength thermal emission applications.  相似文献   

7.
Wen  Kunhua  Hu  Yihua  Chen  Li  Zhou  Jinyun  He  Miao  Lei  Liang  Meng  Ziming 《Plasmonics (Norwell, Mass.)》2017,12(2):427-431
Plasmonics - A tunable multimode plasmonic filter is proposed by using a side-coupled ring-groove joint resonator. In addition to the integer resonance modes of the perfect ring resonator (RR),...  相似文献   

8.
A single notch plasmonic spectral filter design using evanescently coupled resonant ultrathin metal grating is numerically studied in this article. Due to excitation and coupling of long range surface plasmon between the metal grating nanowires, a deep and narrow reflection spectrum dip can be obtained. Narrower spectral bandwidth is achieved through decreased damping from the existence of large dielectric gaps between the grating nanowires. This physical explanation is confirmed by the field distribution calculation. As an example, a single notch filter design with full width half maximum band width less than 3 nm centered at 808 nm is presented.  相似文献   

9.
A tunable wavelength filter based on plasmonic metal?Cdielectric?Cmetal waveguide with optofluidics pump system has been proposed and numerically investigated. The finite difference time domain method with perfectly matched layer-absorbing boundary condition is adopted to simulate and study their properties. An analytical solution to the resonant condition of the structure is derived by means of the cavity theory. It is found that the resonant wavelength of the filter is easily tuned in a broadband by manipulating the fluid filled in the cavity. Both analytical and simulative results reveal that the resonant wavelengths are proportional to the volume and refractive index of liquid in the cavity and are related to the structure of the filter. The resonant wavelengths of this structure can be changed from 1,106 to around 1,800?nm in this paper. The waveguide filter may become a choice for the design of devices in highly integrated optical circuits.  相似文献   

10.
Plasmonics - We present a plasmonic bandpass filter and refractive index sensor based on perturbed square cavity resonator with slits, which is fed by orthogonally oriented feeding waveguides. The...  相似文献   

11.
A high sensitive plasmonic refractive index sensor based on metal-insulator-metal (MIM) waveguides with embedding metallic nano-rods in racetrack resonator has been proposed. The refractive index changes of the dielectric material inside the resonator together with temperature changes can be acquired from the detection of the resonance wavelength, based on their linear relationship. With optimum design and considering a tradeoff among detected power, structure size, and sensitivity, the finite difference time domain simulations show that the refractive index and temperature sensitivity values can be obtained as high as 2610 nm per refractive index unit (RIU) and 1.03 nm/°C, respectively. In addition, resonance wavelengths of resonator are obtained experimentally by using the resonant conditions. The effects of nano-rods radius and refractive index of racetrack resonator are studied on the sensing spectra, as well. The proposed structure with such high sensitivity will be useful in optical communications that can provide a new possibility for designing compact and high-performance plasmonic devices.  相似文献   

12.
This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.  相似文献   

13.
The Au film and glycerin selectively infilling photonic crystal fibers are analyzed by the finite element method. One cladding air hole is coated with Au film and infiltrated with glycerin to form a defect core. The simulation results show that both of the defect core modes formed on the glycerin and Au film can inspire resonance with core modes. The maximum sensitivity can reach to 2.50 nm/ °C in x polarized direction and 2.00 nm/ °C in y polarized direction for the temperature sensor, respectively. Furthermore, we obtain that the confinement losses of the photonic crystal fibers (PCFs) can meet with 321.442 dB/cm and 445.958 dB/cm at a short wavelength band (1460 ~1530 nm) and an extended wavelengths band (1360 ~1460 nm) for x polarized direction and y polarized direction respectively, which can be applied in many polarization filter devices as well. The compatibility of temperature sensor and polarization filter based on an identical structure can be realized at different wavelengths.  相似文献   

14.
Zhou  Chen  Huo  Yiping  Guo  Yiyuan  Niu  Qiqiang 《Plasmonics (Norwell, Mass.)》2021,16(5):1735-1743
Plasmonics - A metal-insulator-metal (MIM) waveguide consisting of two stub resonators and a ring resonator is proposed, which can be used as refractive index sensor and stop-band filter at the...  相似文献   

15.
An on-chip integrated wavelength filter and router device is realized using two-dimensional metal/dielectric nanostructures. The device can filter wavelengths of light from an incident broadband beam, and further route the filtered signals to different ports on the same chip. The footprint of the entire device is only 3.4 μm × 7.3 μm. Both the number of wavelength channels and the central wavelength of each channel can be tuned by adjusting the structure parameters, or by using a pumped laser. This work demonstrates an ultracompact and robust integrated multifunctional device, and provides a novel and flexible method for the integration of nanophotonic devices.  相似文献   

16.
The resonant mode characteristics of the nanoscale surface plasmon polaritons (SPP) waveguide filter with rectangle cavity are studied theoretically. By using the finite difference time domain method, both the band-stop- and band-pass-type rectangle SPP filters are analyzed. The results show that the whispering gallery mode (WGM) and the Fabry–Perot (FP) mode can be supported by the rectangle SPP resonator. Furthermore, both traveling-wave mode and standing-wave mode can be realized by the WGM, while only standing-wave mode can be introduced by the FP mode. The traveling-wave mode can only be realized by the square-shaped SPP resonator, and the traveling-wave mode is splitted into two standing-wave modes by transforming the cavity shape from square to rectangle. Also, the effects of the cavity shape, cavity size, and coupling gap size on the transmission spectra of the SPP resonators are analyzed in detail. This simple SPP waveguide filter is very promising for the high-density SPP waveguide integrations.  相似文献   

17.
The processing of wines with enzymes is a process chain in which losses of biocatalyst are unavoidable. A promising technique for the minimization of these losses and for the reduction of processing time is the high‐gradient magnetic separation in combination with enzymes, which are immobilized onto functionalized magnetic particles. When magnetizable particles are used and magnetic separation is applied to separate these particles from nonmagnetizable particles and solutes, the enzymes can be recycled and used for several production batches. The magnetic filter used in this study had a filter matrix with concentrically stacked circular rotor and stator plates which are arranged in an alternating order. Different geometries of the filter plate notches were examined to optimize the reproducibility of particle retention. In computational fluid dynamic studies, the influence of the notch geometries on the shear rate generation was analyzed for the rinsing procedure. Separation experiments with an optimized geometry of the filter plates were carried out in water and white wine suspensions.  相似文献   

18.
Plasmonics - In this paper, we report the design, analysis, and development of spoof surface plasmon polariton (SSPP)-based reconfigurable band-pass filter using a planar ring resonator. A...  相似文献   

19.
Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.  相似文献   

20.
This study attempts to compare the signal-to-noise ratio (SNR) of the 40 mm High-Temperature Superconducting (HTS) surface resonator at 77 K and the 35 mm commercial quadrature (QD) surface resonator at 300 K in a 3 Tesla (T) MRI imager. To aquire images for the comparison, we implemented a phantom experiment using the 40 mm diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) HTS surface resonator, the 35 mm commercial QD surface resonator and the 40 mm professionally-made copper surface resonator. The HTS surface resonator at 77 K provided a 1.43-fold SNR gain over the QD surface resonator at 300 K and provided a 3.84-fold SNR gain over the professionally-made copper surface resonator at 300 K on phantom images. The results agree with the predictions, and the difference between the predicted SNR gains and measured SNR gains is 1%. Although the geometry of the HTS surface resonator is different from the QD surface resonator, its SNR is still higher. The results demonstrate that a higher image quality can be obtained with the HTS surface resonator at 77 K. With the HTS surface resonator, the SNR can be improved, suggesting that the HTS surface resonator is a potentially helpful diagnostic tool for MRI imaging in various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号