共查询到18条相似文献,搜索用时 15 毫秒
1.
C. B. Peterson B. B. Zhou D. Hsieh A. N. Creager H. K. Schachman 《Protein science : a publication of the Protein Society》1994,3(6):960-966
The regulatory enzyme aspartate transcarbamoylase (ATCase), comprising 2 catalytic (C) trimers and 3 regulatory (R) dimers, owes its stability to the manifold interchain interactions among the 12 polypeptide chains. With the availability of a recombinant 70-amino acid zinc-containing polypeptide fragment of the regulatory chain of ATCase, it has become possible to analyze directly the interaction between catalytic and regulatory chains in a complex of simpler structure independent of other interactions such as those between the 2 C trimers, which also contribute to the stability of the holoenzyme. Also, the effect of the interaction between the polypeptide, termed the zinc domain, and the C trimer on the thermal stability and other properties can be measured directly. Differential scanning microcalorimetry experiments demonstrated that the binding of the zinc domain to the C trimer leads to a complex of markedly increased thermal stability. This was shown with a series of mutant forms of the C trimer, which themselves varied greatly in their temperature of denaturation due to single amino acid replacements. With some C trimers, for which tm varied over a range of 30 degrees C due to diverse amino acid substitutions, the elevation of tm resulting from the interaction with the zinc domain was as large as 18 degrees C. The values of tm for a variety of complexes of mutant C trimers and the wild-type zinc domain were similar to those observed when the holoenzymes containing the mutant C trimers were subjected to heat denaturation.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Stieglitz KA Dusinberre KJ Cardia JP Tsuruta H Kantrowitz ER 《Journal of molecular biology》2005,352(2):478-486
Snapshots of the catalytic cycle of the allosteric enzyme aspartate transcarbamoylase have been obtained via X-ray crystallography. The enzyme in the high-activity high-affinity R state contains two catalytic chains in the asymmetric unit that are different. The active site in one chain is empty, while the active site in the other chain contains an analog of the first substrate to bind in the ordered mechanism of the reaction. Small angle X-ray scattering shows that once the enzyme is converted to the R state, by substrate binding, the enzyme remains in the R state until substrates are exhausted. Thus, this structure represents the active form of the enzyme trapped at two different stages in the catalytic cycle, before the substrates bind (or after the products are released), and after the first substrate binds. Opening and closing of the catalytic chain domains explains how the catalytic cycle occurs while the enzyme remains globally in the R-quaternary structure. 相似文献
3.
4.
B. B. Zhou G. L. Waldrop L. Lum H. K. Schachman 《Protein science : a publication of the Protein Society》1994,3(6):967-974
Interaction between a 70-amino acid and zinc-binding polypeptide from the regulatory chain and the catalytic (C) trimer of aspartate transcarbamoylase (ATCase) leads to dramatic changes in enzyme activity and affinity for active site ligands. The hypothesis that the complex between a C trimer and 3 polypeptide fragments (zinc domain) is an analog of R state ATCase has been examined by steady-state kinetics, heavy-atom isotope effects, and isotope trapping experiments. Inhibition by the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate (PALA), or the substrate analog, succinate, at varying concentrations of substrates, aspartate, or carbamoyl phosphate indicated a compulsory ordered kinetic mechanism with carbamoyl phosphate binding prior to aspartate. In contrast, inhibition studies on C trimer were consistent with a preferred order mechanism. Similarly, 13C kinetic isotope effects in carbamoyl phosphate at infinite aspartate indicated a partially random kinetic mechanism for C trimer, whereas results for the complex of C trimer and zinc domain were consistent with a compulsory ordered mechanism of substrate binding. The dependence of isotope effect on aspartate concentration observed for the Zn domain-C trimer complex was similar to that obtained earlier for intact ATCase. Isotope trapping experiments showed that the compulsory ordered mechanism for the complex was attributable to increased \"stickiness\" of carbamoyl phosphate to the Zn domain-C trimer complex as compared to C trimer alone. The rate of dissociation of carbamoyl phosphate from the Zn domain-C trimer complex was about 10(-2) that from C trimer.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
The binding of the bisubstrate ligand N-(phosphonacetyl)-L-aspartate (PALA) to the active sites of both the free catalytic subunit of aspartate transcarbamoylase and the intact holoenzyme causes conformational changes which have been studied extensively. However, no kinetic information has been available about the sequence of events occurring during the formation or dissociation of the complexes. Stopped flow kinetics, 31P saturation transfer NMR spectroscopy, and presteady-state kinetics were used to monitor the interaction of PALA with the catalytic subunit (or a derivative containing nitrotyrosyl chromophores which served as spectral probes). The various experimental approaches lead to a mechanism that includes a rapid binding of PALA with an "on" rate of about 10(8)M-1s-1 and an "off" rate of 28 s-1, followed by a much slower isomerization of the complex with a forward rate constant of 0.18 s-1. Analysis of the presteady-state bursts of enzyme activity when the protein is added to a mixture of substrates and PALA and of the lag in activity when the PALA complex with catalytic subunit is added to substrates yielded a rate constant for the reverse isomerization of 0.018s-1. Thus, the conformational change subsequent to PALA binding leads to a 10-fold increase in the equilibrium constant for complex formation. Stopped flow kinetic measurements of the spectral change resulting from mixing the complex of PALA and nitrated protein with native enzyme showed a slow process with a t1/2 of about 11 s, whereas 31P saturation transfer NMR experiments yielded at t1/2 of about 260 ms for the dissociation of PALA from the complex. This apparent disparity is understood in terms of the two-step binding scheme where rapid dissociation of the initial ligand X enzyme complex is measured by the NMR technique and the slow isomerization of the complex is responsible for the bulk of the stopped flow signal. 相似文献
6.
MinD, a well-conserved bacterial amphitropic protein involved in spatial regulation of cell division, has a typical feature of reversible binding to the membrane. MinD shows a clear preference for acidic phospholipids organized into lipid domains in bacterial membrane. We have shown that binding of MinD may change the dynamics of model and native membranes (see accompanying paper [1]). On the other hand, MinD dimerization and anchoring could be enhanced on pre-existing anionic phospholipid domains. We have tested MinD binding to model membranes in which acidic and zwitterionic phospholipids are either well-mixed or segregated to phase domains. The phase separation was achieved in binary mixtures of 1-Stearoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol] (SOPG) with 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC) or 1,2-Distearoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (DSPG) and binding to these membranes was compared with that to a fluid mixture of SOPG with 1-Stearoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (SOPC). The results demonstrate that MinD binding to the membrane is enhanced by segregation of anionic phospholipids to fluid domains in a gel-phase environment and, moreover, the protein stabilizes such domains. This suggests that an uneven binding of MinD to the heterogeneous native membrane is possible, leading to formation of a lipid-specific distribution pattern of MinD and/or modulation of its temporal behavior. 相似文献
7.
The Na+/K+-ATPase is a ubiquitous plasma membrane ion pump that utilizes ATP hydrolysis to regulate the intracellular concentration of Na+ and K+. It is comprised of at least two subunits, a large catalytic alpha subunit that mediates ATP hydrolysis and ion transport, and an ancillary beta subunit that is required for proper trafficking of the holoenzyme. Although processes mediated by the alpha subunit have been extensively studied, little is known about the participation of the beta subunit in conformational changes of the enzyme. To elucidate the role of the beta subunit during ion transport, extracellular amino acids proximal to the transmembrane region of the sheep beta1 subunit were individually replaced for cysteines. This enabled sulfhydryl-specific labeling with the environmentally sensitive fluorescent dye tetramethylrhodamine-6-maleimide (TMRM) upon expression in Xenopus oocytes. Investigation by voltage-clamp fluorometry identified three reporter positions on the beta1 subunit that responded with fluorescence changes to alterations in ionic conditions and/or membrane potential. These experiments for the first time show real-time detection of conformational rearrangements of the Na+/K+-ATPase through a fluorophore-labeled beta subunit. Simultaneous recording of presteady-state or stationary currents together with fluorescence signals enabled correlation of the observed environmental changes of the beta subunit to certain reaction steps of the Na+/K+-ATPase, which involve changes in the occupancy of the two principle conformational states, E1P and E2P. From these experiments, evidence is provided that the beta1-S62C mutant can be directly used to monitor the conformational state of the enzyme, while the F64C mutant reveals a relaxation process that is triggered by sodium transport but evolves on a much slower time scale. Finally, shifts in voltage dependence and kinetics observed for mutant K65C show that this charged lysine residue, which is conserved in beta1 isoforms, directly influences the effective potential that determines voltage dependence of extracellular cation binding and release. 相似文献
8.
CNG channels in vivo are heteromers of homologous alpha and beta subunits that each contain a six-transmembrane segment domain and a COOH-terminal cytoplasmic cyclic nucleotide binding domain (BD). In heterologous expression systems, heteromeric alphabeta channels activate with greater sensitivity to ligand than do homomeric alpha channels; however, ligand-gating of channels containing only beta subunit BDs has never been studied because beta subunits cannot form functional homomeric CNG channels. To characterize directly the contribution of the beta subunit BD to ligand-gating, we constructed a chimeric subunit, X-beta, whose BD sequence was that of the beta subunit CNG5 from rat, but whose sequence outside the BD was derived from alpha subunits. For comparison, we constructed another chimera, X-alpha, whose sequence outside the BD was identical to that of X-beta, but whose BD sequence was that of the alpha subunit CNG2 from catfish. When expressed in Xenopus oocytes, X-beta and X-alpha each formed functional homomeric channels activated by both cAMP and cGMP. This is the first demonstration that the beta subunit BD can couple ligand binding to activation in the absence of alpha subunit BD residues. Notably, both agonists activate X-beta more effectively than X-alpha (higher opening efficacy and lower K(1/2)). The BD is believed to comprise two functionally distinct subdomains: (1) the roll subdomain (beta-roll and flanking A- and B-helices) and (2) the C-helix subdomain. Opening efficacy was previously believed to be controlled primarily by the C-helix, but when we made additional chimeras by exchanging the subdomains between X-beta and X-alpha, we found that both subdomains contain significant determinants of efficacy and agonist selectivity. In particular, only channels containing the roll subdomain of the beta subunit had high efficacy. Thermodynamic linkage analysis shows that interaction between the two subdomains accounts for a significant portion of their contribution to activation energetics. 相似文献
9.
In Escherichia coli and other bacteria, MinD, along with MinE and MinC, rapidly oscillates from one pole of the cell to the other controlling the correct placement of the division septum. MinD binds to the membrane through its amphipathic C-terminal α-helix. This binding, promoted by ATP-induced dimerization, may be further enhanced by a consequent attraction of acidic phospholipids and formation of a stable proteolipid domain. In the context of this hypothesis we studied changes in dynamics of a model membrane caused by MinD binding using membrane-embedded fluorescent probes as reporters. A remarkable increase in membrane viscosity and order upon MinD binding to acidic phospholipids was evident from the pyrene and DPH fluorescence changes. This viscosity increase is cooperative with regards to the concentration of MinD-ATP, but not of the ADP form, indicative of dimerization. Moreover, similar changes in the membrane dynamics were demonstrated in the native inverted cytoplasmic membranes of E. coli, with a different depth effect. The mobility of pyrene-labeled phosphatidylglycerol indicated formation of acidic phospholipid-enriched domains in a mixed acidic-zwitterionic membrane at specific MinD/phospholipid ratios. A comparison between MinD from E. coli and Neisseria gonorrhea is also presented. 相似文献
10.
Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
下载免费PDF全文

J. W. Stebbins D. E. Robertson M. F. Roberts R. C. Stevens W. N. Lipscomb E. R. Kantrowitz 《Protein science : a publication of the Protein Society》1992,1(11):1435-1446
The replacement of Arg-54 by Ala in the active site of Escherichia coli aspartate transcarbamoylase causes a 17,000-fold loss of activity but does not significantly influence the binding of substrates or substrate analogs (Stebbins, J.W., Xu, W., & Kantrowitz, E.R., 1989, Biochemistry 28, 2592-2600). In the X-ray structure of the wild-type enzyme, Arg-54 interacts with both the anhydride oxygen and a phosphate oxygen of carbamoyl phosphate (CP) (Gouaux, J.E. & Lipscomb, W.N., 1988, Proc. Natl. Acad. Sci. USA 85, 4205-4208). The Arg-54-->Ala enzyme was crystallized in the presence of the transition state analog N-phosphonacetyl-L-aspartate (PALA), data were collected to a resolution limit of 2.8 A, and the structure was solved by molecular replacement. The analysis of the refined structure (R factor = 0.18) indicates that the substitution did not cause any significant alterations to the active site, except that the side chain of the arginine was replaced by two water molecules. 31P-NMR studies indicate that the binding of CP to the wild-type catalytic subunit produces an upfield chemical shift that cannot reflect a significant change in the ionization state of the CP but rather indicates that there are perturbations in the electronic environment around the phosphate moiety when CP binds to the enzyme. The pH dependence of this upfield shift for bound CP indicates that the catalytic subunit undergoes a conformational change with a pKa approximately 7.7 upon CP binding. Furthermore, the linewidth of the 31P signal of CP bound to the Arg-54-->Ala enzyme is significantly narrower than that of CP bound to the wild-type catalytic subunit at any pH, although the change in chemical shift for the CP bound to the mutant enzyme is unaltered. 31P-NMR studies of PALA complexed to the wild-type catalytic subunit indicate that the phosphonate group of the bound PALA exists as the dianion at pH 7.0 and 8.8, whereas in the Arg-54-->Ala catalytic subunit the phosphonate group of the bound PALA exists as the monoanion at pH 7.0 and 8.8. Thus, the side chain of Arg-54 is essential for the proper ionization of the phosphonate group of PALA and by analogy the phosphate group in the transition state. These data support the previously proposed proton transfer mechanism, in which a fully ionized phosphate group in the transition state accepts a proton during catalysis. 相似文献
11.
Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. 总被引:16,自引:4,他引:16
下载免费PDF全文

J. Zheng D. R. Knighton N. H. Xuong S. S. Taylor J. M. Sowadski L. F. Ten Eyck 《Protein science : a publication of the Protein Society》1993,2(10):1559-1573
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme. 相似文献
12.
A single alpha-helical polypeptide segment of 21 amino acids near the carboxyl terminus of the catalytic chain of aspartate transcarbamoylase from Escherichia coli has been shown recently to be important for the in vivo folding of the chains and assembly of the enzyme (Peterson, C. B., and Schachman, H. K. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 458-462). Calorimetric measurements on purified mutant enzymes showed that single amino acid replacements within this secondary structural element affect the overall thermal stability of the oligomeric enzyme and the energetics of the interactions between polypeptide chains within the holoenzyme. Studies presented here demonstrate that marked changes in cooperativity occur due to single amino acid substitutions. Replacement of Gln288 by either Ala or Glu leads to a striking increase in the Hill coefficient of the holoenzymes and a substantial increase in the aspartate concentration corresponding to one-half Vmax. In contrast, the isolated catalytic trimers harboring these same substitutions were similar in activity to the wild-type subunit, with the same affinity for aspartate as indicated by the values of Km. Substituting Ala for the only charged residue in the helix, Arg296, caused a marked reduction in enzyme activity, as well as a greatly reduced stability of the holoenzyme due to a substantial weakening of the interactions between the catalytic and regulatory subunits. A subunit exchange method was used to demonstrate the changes in interchain interactions resulting from the amino acid substitutions and to show the additional weakening upon the binding of the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate, at the active sites. Taken together, the results on this series of mutant enzymes illustrate how the effects of single amino acid replacements in one element of secondary structure are propagated throughout the molecule to positions remote from the site of the substitution. 相似文献
13.
Energy coupling between DNA binding and subunit association is responsible for the specificity of DNA-Arc interaction. 总被引:3,自引:0,他引:3
下载免费PDF全文

J. L. Silva C. F. Silveira 《Protein science : a publication of the Protein Society》1993,2(6):945-950
The effects of several DNA molecules on the free energy of subunit association of Arc repressor were measured. The association studies under equilibrium conditions were performed by the dissociating perturbation of hydrostatic pressure. The magnitude of stabilization of the subunit interaction was determined by the specificity of the protein-DNA interaction. Operator DNA stabilized the free energy of association by about 2.2 kcal/mol of monomeric unit, whereas poly(dG-dC) stabilized the subunit interaction by only 0.26 kcal. Measurements of the stabilizing free energy at different DNA concentrations revealed a stoichiometry of two dimers per 21 bp for the operator DNA sequence and for the nonspecific DNA poly(dA-dT). However, the maximum stabilization was much larger for operator sequence (delta p = 1,750 bar) as compared for poly(dA-dT) (delta p = 750 bar). The importance of the free-energy linkage for the recognition process was corroborated by its absence in a mutant Arc protein (PL8) that binds to operator and nonspecific DNA sequences with equal, low affinity. We conclude that the coupling accounts for the high specificity of the Arc-operator DNA interaction. We hypothesize a mutual coupling between the protein subunits and the two DNA strands, in which the much higher persistency of the associated form when Arc is bound to operator would stabilize the interactions between the two DNA strands. 相似文献
14.
Richard L. Cross 《Journal of bioenergetics and biomembranes》1988,20(4):395-405
Recent structural and kinetic studies of F1 and F0F1 are reviewed with regard to their implications for the binding change mechanism for ATP synthesis by oxidative phosphorylation and photophosphorylation. It is concluded that at least two and probably all three of the catalytic sites on F1 are functionally equivalent despite permanent structural asymmetry in the soluble enzyme. A rotary mechanism in which all three catalytic subunits experience all possible interactions with the single-copy subunits during turnover is thought not to apply to soluble F1 but remains an attractive model for the membrane bound enzyme. 相似文献
15.
Houben K Wasielewski E Dominguez C Kellenberger E Atkinson RA Timmers HT Kieffer B Boelens R 《Journal of molecular biology》2005,349(3):621-637
Zinc fingers are small structured protein domains that require the coordination of zinc for a stable tertiary fold. Together with FYVE and PHD, the RING domain forms a distinct class of zinc-binding domains, where two zinc ions are ligated in a cross-braced manner, with the first and third pairs of ligands coordinating one zinc ion, while the second and fourth pairs ligate the other zinc ion. To investigate the relationship between the stability and dynamic behaviour of the domains and the stability of the metal-binding site, we studied metal exchange for the C4C4 RING domains of CNOT4 and the p44 subunit of TFIIH. We found that Zn(2+)-Cd(2+) exchange is different between the two metal-binding sites in the C4C4 RING domains of the two proteins. In order to understand the origins of these distinct exchange rates, we studied the backbone dynamics of both domains in the presence of zinc and of cadmium by NMR spectroscopy. The differential stability of the two metal-binding sites in the RING domains, as reflected by the different metal exchange rates, can be explained by a combination of accessibility and an electrostatic ion interaction model. A greater backbone flexibility for the p44 RING domain as compared to CNOT4 may be related to the distinct types of protein-protein interactions in which the two C4C4 RING domains are involved. 相似文献
16.
Structural/functional properties of the Glu1-HSer57 N-terminal fragment of human plasminogen: conformational characterization and interaction with kringle domains.
下载免费PDF全文

S. S. An D. N. Marti C. Carreo F. Albericio J. Schaller M. Llinas 《Protein science : a publication of the Protein Society》1998,7(9):1947-1959
The Glu1-Val79 N-terminal peptide (NTP) domain of human plasminogen (Pgn) is followed by a tandem array of five kringle (K) structures of approximately 9 kDa each. K1, K2, K4, and K5 contain each a lysine-binding site (LBS). Pgn was cleaved with CNBr and the Glul-HSer57 N-terminal fragment (CB-NTP) isolated. In addition, the Ile27-Ile56 peptide (L-NTP) that spans the doubly S-S bridged loop segment of NTP was synthesized. Pgn kringles were generated either by proteolytic fragmentation of Pgn (K4, K5) or via recombinant gene expression (rK1, rK2, and rK3). Interactions of CB-NTP with each of the Pgn kringles were monitored by 1H-NMR at 500 MHz and values for the equilibrium association constants (Ka) determined: rK1, Ka approximately 4.6 mM(-1); rK2, Ka approximately 3.3 mM(-1); K4, Ka approximately 6.2 mM-'; K5, K, 2.3 mM(-1). Thus, the lysine-binding kringles interact with CB-NTP more strongly than with Nalpha-acetyl-L-lysine methyl ester (Ka < 0.6 mM(-l), which reveals specificity for the NTP. In contrast, CB-NTP does not measurably interact with rK3. which is devoid of a LBS. CB-NTP and L-NTP 1H-NMR spectra were assigned and interproton distances estimated from 1H-1H Overhauser (NOESY) experiments. Structures of L-NTP and the Glul-Ile27 segment of CB-NTP were computed via restrained dynamic simulated annealing/energy minimization (SA/EM) protocols. Conformational models of CB-NTP were generated by joining the two (sub)structures followed by a round of constrained SA/EM. Helical turns are indicated for segments 6-9, 12-16, 28-30, and 45-48. Within the Cys34-Cys42 loop of L-NTP, the structure of the Glu-Glu-Asp-Glu-Glu39 segment appears to be relatively less defined, as is the case for the stretch containing Lys5O within the Cys42-Cys54 segment, consistent with the latter possibly interacting with kringle domains in intact Glul-Pgn. Overall, the CB-NTP and L-NTP fragments are of low regular secondary structure content-as indicated by UV-CD spectra- and exhibit fast amide 1H-2H exchange in 2H2O, suggestive of high flexibility. 相似文献
17.
The Kv2.1 potassium channel contains a lysine in the outer vestibule (position 356) that markedly reduces open channel sensitivity to changes in external [K(+)]. To investigate the mechanism underlying this effect, we examined the influence of this outer vestibule lysine on three measures of K(+) and Na(+) permeation. Permeability ratio measurements, measurements of the lowest [K(+)] required for interaction with the selectivity filter, and measurements of macroscopic K(+) and Na(+) conductance, were all consistent with the same conclusion: that the outer vestibule lysine in Kv2.1 interferes with the ability of K(+) to enter or exit the extracellular side of the selectivity filter. In contrast to its influence on K(+) permeation properties, Lys 356 appeared to be without effect on Na(+) permeation. This suggests that Lys 356 limited K(+) flux by interfering with a selective K(+) binding site. Combined with permeation studies, results from additional mutagenesis near the external entrance to the selectivity filter indicated that this site was located external to, and independent from, the selectivity filter. Protonation of a naturally occurring histidine in the same outer vestibule location in the Kv1.5 potassium channel produced similar effects on K(+) permeation properties. Together, these results indicate that a selective, functional K(+) binding site (e.g., local energy minimum) exists in the outer vestibule of voltage-gated K(+) channels. We suggest that this site is the location of K(+) hydration/dehydration postulated to exist based on the structural studies of KcsA. Finally, neutralization of position 356 enhanced outward K(+) current magnitude, but did not influence the ability of internal K(+) to enter the pore. These data indicate that in Kv2.1, exit of K(+) from the selectivity filter, rather than entry of internal K(+) into the channel, limits outward current magnitude. We discuss the implications of these findings in relation to the structural basis of channel conductance in different K(+) channels. 相似文献
18.
Osmolytes of the polyol series are known to accumulate in biological systems under stress and stabilize the structures of a wide variety of proteins. While increased surface tension of aqueous solutions has been considered an important factor in protein stabilization effect, glycerol is an exception, lowering the surface tension of water. To clarify this anomalous effect, the effect of a series of polyols on the thermal stability of a highly thermolabile two domain protein yeast hexokinase A has been investigated by differential scanning calorimetry and by monitoring loss in the biological activity of the enzyme as a function of time. A larger increase in the T(m) of domain 1 compared with that of domain 2, varying linearly with the number of hydroxyl groups in polyols, has been observed, sorbitol being the best stabilizer against both thermal as well as urea denaturation. Polyols help retain the activity of the enzyme considerably and a good correlation of the increase in T(m) (DeltaT(m)) and the retention of activity with the increase in the surface tension of polyol solutions, except glycerol, which breaks this trend, has been observed. However, the DeltaT(m) values show a linear correlation with apparent molal heat capacity and volume of aqueous polyol solutions including glycerol. These results suggest that while bulk solution properties contribute significantly to protein stabilization, interfacial properties are not always a good indicator of the stabilizing effect. A subtle balance of various weak binding and exclusion effects of the osmolytes mediated by water further regulates the stabilizing effect. Understanding these aspects is critical in the rational design of stable protein formulations. 相似文献