共查询到20条相似文献,搜索用时 0 毫秒
1.
A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second-order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to detection properties. Full geometry optimisation using the 6-311++G** basis set provided energetic properties, natural charges, frontier orbitals and vibrational modes. Excitation energies were obtained using time-dependent DFT. Hydrogen location and bond order contribute significantly to the electronic properties. The common cyromazine tautomer possesses the lowest energy, highest band gap energy and highest excitation energy. B3LYP/6-31G** dynamics simulations indicate each tautomer possesses a stable structure with limited rotation about the single bonds. Tautomerisation involving intramolecular hydrogen transfer influences the natural charges of neighbouring atoms and the frontier orbital properties. The excitation energies are highly correlated with band gap energies of the frontier orbitals. The calculated infrared and Raman spectra are suitable for vibrational assignments associated with the chemical structure. The tautomeric forms of cyromazine possess similar spatial properties and significant variation in electronic properties. 相似文献
2.
Spin–spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob’s ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. 相似文献
3.
《Redox report : communications in free radical research》2013,18(5):263-269
AbstractWe report here on calculations at the hybrid DFT/HF (B3-LYP/6-31G(d, p)) level of the O–H bond dissociation enthalpy (O–H BDE) of phenylpropenoic acids (caffeic, ferulic, p-coumaric and cinnamic) and phenolic acids and related compounds (gallic, methylgallate, vanillic and gentisic) in order to gain insight into the understanding of structure–antioxidant activity relationships. The results were correlated and discussed mainly on the basis of experimental data in a companion work (Galato D, Giacomelli C, Ckless K, Susin MF, Vale RMR, Spinelli A. Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Report 2001; 6: 243–250). The O–H BDE values showed remarkable dependence on the hydroxyl position in the benzene ring and the existence of additional interaction due to hydrogen bonding. For parent molecules, the experimental antioxidant activity (AA) order was properly obeyed only when intramolecular hydrogen bonding was present in the radicalized structures of o-dihydroxyl moieties. In structurally related compounds, excellent correlation with experimental data was in general observed (0.64 < ρ < 0.99). However, it is shown that excellent correlation can also be obtained for this series of compounds considering p-radicalized structures which were not stabilized by intramolecular hydrogen bonding, but this had no physical meaning. These findings suggested that the antioxidant activity evaluation of phenolic and related compounds must take into consideration the characteristics of each particular compound. 相似文献
4.
5.
An ab initio computational density functional theory (DFT) was used to study the formation of the first cyclic molecule (phenyl)
initiated by the ethynyl radical (C2H•). The study covers a competition reaction between the addition reactions of C2H• with ethyne (C2H2) and some molecular re-arrangement schemes. The minimum energy paths of the preferred cyclic formation route were characterized.
A thorough thermochemical analysis was performed by evaluating the differences in the energy of activation (ΔE), enthalpy
(ΔH), and Gibb's free energy (ΔG) of the optimized stable and transition state (TS) molecules. The reaction temperatures were
set to normal (T = 298 K) and combustion (T = 1,200 K) conditions.
相似文献
Romero M. SantiagoEmail: |
6.
Mohamed Naseer Ali Mohamed Heath D. Watts Jing Guo Jeffrey M. Catchmark James D. Kubicki 《Carbohydrate research》2010,345(12):1741-14202
Exploring non-covalent interactions, such as C-H···π stacking and classical hydrogen bonding (H-bonding), between carbohydrates and carbohydrate-binding modules (CBMs) is an important task in glycobiology. The present study focuses on intermolecular interactions, such as C-H?π (sugar-aromatic stacking) and H-bonds, between methyl β-d-glucopyranoside and l-tyrosine—a proxy model system for a cellulose-CBM complex. This work has made use of various types of quantum mechanics (QM) and molecular mechanics (MM) methods to determine which is the most accurate and computationally efficient. The calculated interaction potential energies ranged between −24 and −38 kJ/mol. The larger interaction energy is due to H-bonding between the phenyl hydroxyl of tyrosine and the O4 of the sugar. Density functional theory (DFT) methods, such as BHandHLYP and B3LYP, exaggerate the H-bond. Although one of the MM methods (viz. MM+) considered in this study does maintain the C-H?π stacking configuration, it underestimates the interaction energy due to the loss of the H-bond. When the O-H bond vector is in the vicinity of O4 (O-H?O4 ≈ 2 Å, e.g., in the case of MP2/6-31G(d)), the torsional energy drops to a minimum. For this configuration, natural bond orbital (NBO) analysis also supports the presence of this H-bond which arises due to orbital interaction between one lone pair of the sugar O4 and the σ∗(O-H) orbital of the phenyl group of tyrosine. The stabilization energy due to orbital delocalization of the H-bonded system is ∼13 kJ/mol. This H-bond interaction plays an important role in controlling the CH/π interaction geometry. Therefore, the C-H?π dispersive interaction is the secondary force, which supports the stabilization of the complex. The meta-hybrid DFT method, M05-2X, with the 6-311++G(d,p) basis set agrees well with the MP2 results and is less computationally expensive. However, the M05-2X method is strongly basis set dependent in describing this CH/π interaction. Computed IR spectra with the MP2/6-31G(d) method show blue shifts for C1-H, C3-H, and C5-H stretching frequencies due to the C-H?π interaction. However, the M05-2X/6-311++G(d,p) method shows a small red shift for the C1-H stretching region and blue shifts for the C2-H and C3-H stretches. For the aromatic tyrosine Cδ1-Cε1 and Cδ2-Cε2 bonds in the complex, the calculated IR spectra show red shifts of 12 cm−1 (MP2/6-31G(d)) and 5 cm−1 (M05-2X/6-311++G(d,p)). This study also reports the upfield shifts of computed 1H NMR chemical shifts due to the C-H?π interaction. 相似文献
7.
Abundance–body size relationships are widely observed macroecological patterns in complete food webs and in taxonomically or functionally defined subsets of those webs. Observed abundance–body size relationships have frequently been compared with predictions based on the energetic equivalence hypothesis and, more recently, with predictions based on energy availability to different body size classes. Here, we consider the ways in which working with taxonomically or functionally defined subsets of food webs affected the relationship between the predicted and observed scaling of biomass and body mass in sediment dwelling benthic invertebrate communities at three sites in the North Sea. At each site, the energy available to body size classes in the “whole” community (community defined as all animals of 0.03125–32.0 g shell-free wet weight) and in three subsets was predicted from estimates of trophic level based on nitrogen stable isotope analysis. The observed and predicted scalings of biomass and body size were not significantly different for the whole community, and reflected an increase in energy availability with body size. However, the results for subsets showed that energy availability could increase or decrease with body size, and that individuals in the subsets were likely to be competing with individuals outside the subsets for energy. We conclude that the study of abundance–body mass relationships in functionally or taxonomically defined subsets of food webs is unlikely to provide an adequate test of the energetic equivalence hypothesis or other relationships between energy availability and scaling. To consistently and reliably interpret the results of these tests, it is necessary to know about energy availability as a function of body size both within and outside the subset considered. 相似文献
8.
Hamid Reza Masoodi Sotoodeh Bagheri Mahsa Abareghi 《Journal of biomolecular structure & dynamics》2016,34(6):1143-1155
In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine–cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs. 相似文献
9.
Davood Nori-Shargh Hooriye Yahyaei Seiedeh Negar Mousavi Akram Maasoomi Hakan Kayi 《Journal of molecular modeling》2013,19(6):2549-2557
Natural bond orbital (NBO), nuclear magnetic resonance (NMR) analysis and hybrid-density functional theory based method (B3LYP/Def2-TZVPP) were used to investigate the correlation between the nucleus-independent chemical shifts [NICS, as an aromaticity criterion], σ Al(1)-X2(b) → σ*Al(3)-X4(b) electron delocalizations and the dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6 to 2AlX3 (X?=?F, Cl, Br, I). The results obtained showed that the dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6 decrease from Al2F6 to Al2I6. Like aromatic molecules, these compounds have relatively significant negative NICSiso(0) values. Clearly, based on magnetic criteria, they exhibit aromatic character and make it possible to consider them as σ-delocalized aromatic species, such as Möbius σ-aromatic species. The σ-aromatic character which is demonstrated by their NICSiso(0) values decreases from Al2F6 to Al2I6. The NICSiso values are dominated by the in-plane σ22 (i.e., σyy, the plane containing halogen atoms bridged) chemical shift components. The increase of the NICSiso values explains significantly the decrease of the corresponding dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6. Importantly, the NBO results suggest that in these compounds the dissociation energies are controlled by the stabilization energies associated with σ Al(1)-X2(b) →σ*Al(3)-X4(b) electron delocalizations. The decrease of the stabilization energies associated with σ Al(1)-X2(b) →σ*Al(3)-X4(b) electron delocalizations is in accordance with the variation of the calculated NICSiso values. The correlations between the dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6, σ Al(1)-X2(b) →σ*Al(3)-X4(b) electron delocalizations, natural atomic orbitals (NAOs) and NICSiso values have been investigated. 相似文献
10.
11.
Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C–N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N′-dimethylethylenediamine as ligand and K2CO3 as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N′-dimethylethylene diamine) was used in the C–O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers. 相似文献
12.
A database of peptide chemical shifts, computed at the density functional level, has been used to develop an algorithm for prediction of 15N and 13C shifts in proteins from their structure; the method is incorporated into a program called SHIFTS (version 4.0). The database was built from the calculated chemical shift patterns of 1335 peptides whose backbone torsion angles are limited to areas of the Ramachandran map around helical and sheet configurations. For each tripeptide in these regions of regular secondary structure (which constitute about 40% of residues in globular proteins) SHIFTS also consults the database for information about sidechain torsion angle effects for the residue of interest and for the preceding residue, and estimates hydrogen bonding effects through an empirical formula that is also based on density functional calculations on peptides. The program optionally searches for alternate side-chain torsion angles that could significantly improve agreement between calculated and observed shifts. The application of the program on 20 proteins shows good consistency with experimental data, with correlation coefficients of 0.92, 0.98, 0.99 and 0.90 and r.m.s. deviations of 1.94, 0.97, 1.05, and 1.08 ppm for 15N, 13C, 13C and 13C, respectively. Reference shifts fit to protein data are in good agreement with `random-coil' values derived from experimental measurements on peptides. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement. 相似文献
13.
Caroline A. Famiglietti Matthew Worden Gregory R. Quetin T. Luke Smallman Uma Dayal A. Anthony Bloom Mathew Williams Alexandra G. Konings 《Global Change Biology》2023,29(8):2256-2273
Accurate estimation and forecasts of net biome CO2 exchange (NBE) are vital for understanding the role of terrestrial ecosystems in a changing climate. Prior efforts to improve NBE predictions have predominantly focused on increasing models' structural realism (and thus complexity), but parametric error and uncertainty are also key determinants of model skill. Here, we investigate how different parameterization assumptions propagate into NBE prediction errors across the globe, pitting the traditional plant functional type (PFT)-based approach against a novel top-down, machine learning-based “environmental filtering” (EF) approach. To do so, we simulate these contrasting methods for parameter assignment within a flexible model–data fusion framework of the terrestrial carbon cycle (CARDAMOM) at a global scale. In the PFT-based approach, model parameters from a small number of select locations are applied uniformly within regions sharing similar land cover characteristics. In the EF-based approach, a pixel's parameters are predicted based on underlying relationships with climate, soil, and canopy properties. To isolate the role of parametric from structural uncertainty in our analysis, we benchmark the resulting PFT-based and EF-based NBE predictions with estimates from CARDAMOM's Bayesian optimization approach (whereby “true” parameters consistent with a suite of data constraints are retrieved on a pixel-by-pixel basis). When considering the mean absolute error of NBE predictions across time, we find that the EF-based approach matches or outperforms the PFT-based approach at 55% of pixels—a narrow majority. However, NBE estimates from the EF-based approach are susceptible to compensation between errors in component flux predictions and predicted parameters can align poorly with the assumed “true” values. Overall, though, the EF-based approach is comparable to conventional approaches and merits further investigation to better understand and resolve these limitations. This work provides insight into the relationship between terrestrial biosphere model performance and parametric uncertainty, informing efforts to improve model parameterization via PFT-free and trait-based approaches. 相似文献
14.
15.
《Bioorganic & medicinal chemistry letters》2014,24(21):5111-5117
Pyrrolopiperidinone acetic acids (PPAs) were identified as highly potent CRTh2 receptor antagonists. In addition, many of these compounds displayed slow-dissociation kinetics from the receptor. Structure–kinetic relationship (SKR) studies allowed optimisation of the kinetics to give potent analogues with long receptor residence half-lives of up to 23 h. Low permeability was a general feature of this series, however oral bioavailability could be achieved through the use of ester prodrugs. 相似文献
16.
Ruiting Li Peifang Liu Peijia Liu Yuan Tian Yunfei Hua Yiqiao Gao Hua He Jiaqing Chen Zunjian Zhang Yin Huang 《Amino acids》2016,48(6):1523-1532
17.
Many communities comprise species that select resources that are patchily distributed in an environment that is otherwise unsuitable or suboptimal. Effects of this patchiness can depend on the characteristics of patch arrays and animal movements, and produce non-intuitive outcomes in which population densities are unrelated to resource abundance. Resource mosaics are predicted to have only weak effects, however, where patches are ephemeral or organisms are transported advectively. The running waters of streams and benthic invertebrates epitomize such systems, but empirical tests of resource mosaics are scarce. We sampled 15 common macroinvertebrates inhabiting distinct detritus patches at four sites within a sand-bed stream, where detritus formed a major resource of food and living space. At each site, environmental variables were measured for 100 leaf packs; invertebrates were counted in 50 leaf packs. Sites differed in total abundance of detritus, leaf pack sizes and invertebrate densities. Multivariate analysis indicated that patch size was the dominant environmental variable, but invertebrate densities differed significantly between sites even after accounting for patch size. Leaf specialists showed positive and strong density–area relationships, except where the patch size range was small and patches were aggregated. In contrast, generalist species had weaker and variable responses to patch sizes. Population densities were not associated with total resource abundance, with the highest densities of leaf specialists in sites with the least detritus. Our results demonstrate that patchy resources can affect species even in communities where species are mobile, have advective dispersal, and patches are relatively ephemeral. 相似文献
18.
Density functional theory optimizations of structures of dizinc(II) complexes with a six-residue model of the ferroxidase center of human H ferritin have been performed and the results compared with the crystallographically determined structure of the complex as presented in Protein Data Bank file 2CEI. The model employs the full structures of Glu27, Glu62, His65, Glu107, Gln141, and Ala144, and the structural effect of Tyr34 is also examined. The mean absolute deviation from experiment of atomic positions in the best calculated structures is less than 0.3 Å. The experimental structure is reproduced well enough to determine the coordination environment of the metal ions. Each zinc(II) center is pentacoordinate with a single water ligand, and the two centers are bridged by a hydroxide ion. Ala144 interacts weakly and repulsively with the rest of the complex. Tyr34 displays a weak attraction through a hydrogen bond to Glu107 that affects the orientation of that group. 相似文献
19.
The switching propensity and maximum probability of occurrence of the side chain imidazole group in the dipeptide cyclo(His–Pro)
(CHP) were studied by applying molecular dynamics simulations and density functional theory. The atomistic behaviour of CHP
with the neurotoxins glutamate (E) and paraquat (Pq) were also explored; E and Pq engage in hydrogen bond formation with the
diketopiperazine (DKP) ring of the dipeptide, with which E shows a profound interaction, as confirmed further by NH and CO
stretching vibrational frequencies. The effect of CHP was found to be greater on E than on Pq neurotoxin. A ring puckering
study indicated a twist boat conformation for the six-membered DKP ring. Molecular electrostatic potential (MESP) mapping
was also used to explore the hydrogen bond interactions prevailing between the neurotoxins and the DKP ring. The results of
this study reveal that the DKP ring of the dipeptide CHP can be expected to play a significant role in reducing effects such
as oxidative stress and cell death caused by neurotoxins. 相似文献
20.
Massoud Heidary 《Archives Of Phytopathology And Plant Protection》2013,46(19):2392-2399
To explore the effects of bottom-up and top-down forces on the relationships between a host, Plutella xylostella (L.) (Lepidoptera, Plutellidae), and its parasitoid, Cotesia vestalis (Haliday) (Hymenoptera, Braconidae), a short-term field experiment was established as a factorial experiment using three different host plants (Brassica pekinensis cv. Yuki F1, Brassica oleracea var. capitata cv. Midorimaru F1 and B. oleracea var. botrytis cv. Snow Crown) in the presence of C. vestalis at two different levels (low and high initial release). The tritrophic interactions were monitored by census counts of live adults 20?days after parasitoid release. The mean numbers of P. xylostella and C. vestalis adults were compared using log-linear analysis of deviance. Also, differences in the levels of parasitism were analysed using logistic analysis of deviance. There was a significant effect of host plant type on the abundance of P. xylostella, the abundance of C. vestalis and the percentage parasitism of P. xylostella by C. vestalis. The mean number of P. xylostella adults per cage on common cabbage or cauliflower was significantly greater than that on Chinese cabbage. The mean number of C. vestalis adults and the proportion of hosts attacked by C. vestalis per cage were significantly greater on Chinese cabbage compared with common cabbage or cauliflower. Indeed, initial parasitoid release did not significantly affect the abundance of P. xylostella but there was a significant influence of initial parasitoid release on the abundance of C. vestalis and the levels of parasitism of P. xylostella by C. vestalis. The mean number of C. vestalis adults and the proportion of P. xylostella parasitised by C. vestalis per cage were greater in high level of parasitoid release compared with low level of parasitoid release. However, there were no significant interacting effect of the factors (plant type?×?parasitoid initial abundance) on the abundance of P. xylostella, the population size of C. vestalis and parasitism of P. xylostella by C. vestalis. 相似文献