首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transgenicwheat plants (variety Frisal) constitutively expressing a number of potentialantifungal proteins alone or in combinations were generated and tested forincreased resistance to Blumeria graminis f.sp. tritici(powdery mildew) in a detached leaf infection assay. The most significativerateof protection was obtained with an apoplastic ribosome-inactivation proteinfrombarley seed. Apoplastic Barnase was less efficient and individual plant linesharbouring a barley seed chitinase and -1,3-glucanase showed linespecificphenotypes from increased resistance to increased susceptibility. Combinationbycrossing of three barley seed proteins did not lead to significant improvementof protection.  相似文献   

2.
3.
大麦抗白粉病基因Mlo的研究进展   总被引:10,自引:0,他引:10  
野生型Mlo基因是大麦抗白粉病的负调控因子,该基因突变,赋予大麦对白粉菌的广谱抗性。综述了Mlo基因结构、功能及Mlo突变的等位基因(mlo)的抗性特点;讨论了mlo基因可能的抗病机制。为mlo抗性在麦类白粉病抗病育种中的应用提供了理论基础。  相似文献   

4.
Powdery mildew, caused byEryisphe graminis f. sp.hordei, is one of the most important diseases of barley (Hordeum vulgare). A number of loci conditioning resistance to this disease have been reported previously. The objective of this study was to use molecular markers to identify chromosomal regions containing genes for powdery mildew resistance and to estimate the resistance effect of each locus. A set of 28 F1 hybrids and eight parental lines from a barley diallel study was inoculated with each of five isolates ofE. graminis. The parents were surveyed for restriction fragment length polymorphisms (RFLPs) at 84 marker loci that cover about 1100 cM of the barley genome. The RFLP genotypes of the F1s were deduced from those of the parents. A total of 27 loci, distributed on six of the seven barley chromosomes, detected significant resistance effects to at least one of the five isolates. Almost all the chromosomal regions previously reported to carry genes for powdery mildew resistance were detected, plus the possible existence of 1 additional locus on chromosome 7. The analysis indicated that additive genetic effects are the most important component in conditioning powdery mildew resistance. However, there is also a considerable amount of dominance effects at most loci, and even overdominance is likely to be present at a number of loci. These results suggest that quantitative differences are likely to exist among alleles even at loci which are considered to carry major genes for resistance, and minor effects may be prevalent in cultivars that are not known to carry major genes for resistance.  相似文献   

5.
J H J?rgensen 《Génome》1996,39(3):492-498
Three recessive mutagen-induced alleles that partially suppress the phenotypic expression of the semidominant powdery mildew resistance gene Mla12 have been studied. When each suppressor is present in homozygous condition, the infection type 0, conferred by gene Mla12 when homozygous, is changed to intermediate infection types. The three suppressor lines were crossed with seven near-isogenic lines with different powdery mildew resistance genes and one, M100, was crossed with nine additional lines. Seedlings of parents and from the F1and F2 generations were tested with powdery mildew isolates that possessed the appropriate avirulence and virulence genes. The segregation of phenotypes in the F2 generation disclosed that the three suppressors affected the phenotypic expression of three resistance genes, whereas that of four resistance genes remained unaffected. The suppressor in mutant M100 affected the phenotypic expression of 9 of the 10 additional resistance genes present. It is suggested that the three suppressors are mutationally modified genes involved in host defence processes. This implies that different resistance genes employ different, but overlapping, spectra of defence processes, or signal transduction pathways. Key words : barley, Hordeum vulgare, powdery mildew, Erysiphe graminis hordei, mutation, resistance, suppressor.  相似文献   

6.
7.
A total of forty eight accessions of barley landraces from Morocco were screened for resistance to powdery mildew. Twenty two (46%) of tested landraces showed resistance reactions and thirty four single plant lines were selected. Eleven of these lines were tested in seedling stage with seventeen and another twenty three lines with twenty three isolates of powdery mildew respectively. The isolates were chosen according to the virulence spectra observed on the ‘Pallas’ isolines differential set. Line 229–2–2 was identified with resistance to all prevalent in Europe powdery mildew virulence genes. Lines 230–1–1, 248–1–3 showed susceptible reaction for only one and lines 221–3–2, 227–1–1, 244–3–4 for only two isolates respectively. Three different resistance alleles (Mlat, Mla6, and MLA14) were postulated to be present in tested lines alone or in combination. In thirty (88%) tested lines it was impossible to determine which specific gene or genes for resistance were present. Most probably these lines possessed alleles not represented in the ‘Pallas’ isolines differential set. The distribution of reaction type indicated that about 71% of all reaction types observed were classified as powdery mildew resistance (scores 0, 1 and 2). Majority (79%) of resistance reaction types observed in tested lines was intermediate resistance reaction type two and twenty three lines (68%) showed this reaction for inoculation with more than 50% isolates used. The use of new effective sources of resistance from Moroccan barley landraces for diversification of resistance genes for powdery mildew in barley cultivars was discussed.  相似文献   

8.
Membrane trafficking is vital to plant development and adaptation to the environment. It is suggested that post‐Golgi vesicles and multivesicular bodies are essential for plant defence against directly penetrating fungal parasites at the cell wall. However, the actual plant proteins involved in membrane transport for defence are largely unidentified. We applied a candidate gene approach and single cell transient‐induced gene silencing for the identification of membrane trafficking proteins of barley involved in the response to the fungal pathogen Blumeria graminis f.sp. hordei. This revealed potential components of vesicle tethering complexes [putative exocyst subunit HvEXO70F‐like and subunits of the conserved oligomeric Golgi (COG) complex] and Golgi membrane trafficking (COPIγ coatomer and HvYPT1‐like RAB GTPase) as essential for resistance to fungal penetration into the host cell.  相似文献   

9.
10.
Strains within field populations of barley powdery mildew (Erysiphe graminis f. sp. hordei) varied greatly in their response to ethirimol. Each strain remained stable whether the fungicide was present or not, and no evidence for adaptation was obtained. Strains of intermediate sensitivity were the most frequent within the pathogen population, and these also dominated model populations maintained in the laboratory. Ethirimol eliminated sensitive strains from laboratory mixtures, and increased the relative fitness of insensitive ones, but not sufficiently to oust the intermediate strains. Mildew from treated field plots was less sensitive than that from untreated plots, but only early in the epidemic. Insensitivity was not related to the level of ethirimol used and, at four times the rate used commercially, insensitive strains were no more frequent than at lower rates. As the complexity of mildew populations increased, changes in ethirimol sensitivity in response to selection became less pronounced, and it is suggested that strains of intermediate sensitivity to ethirimol exert a stabilising effect within natural populations. This could alter if the fitness of insensitive strains were to increase, perhaps through recombination. Consideration should be given to the effect ethirimol might have on the composition of the pathogen population if applied when sexual recombination occurs, and to the role ascospores play in disease development.  相似文献   

11.
During vegetative period 2004–2005 powdery mildew (Erysiphe graminis DC. f. sp. hordei Em. Marchal) field resistance of spring barley cultivars was investigated at the Lithuanian Institute of Agriculture. The spring barley genotypes tested were Lithuania-registered cultivars, cultivars from genetic resources collection, and the new cultivars used for initial breeding. In total, 23 resistance genes were present in the 84 cultivars studied. Among mono-genes only mlo and 1-B-53 showed very high resistance. Slight powdery mildew necroses (up to 3 scores) formed on cultivars possessing these genes. The maximal powdery mildew (PM) severity reached a score of 8.5 and the area under disease progress curve (AUDPC) a value of 1216.8. The cultivars ‘Primus’, ‘Astoria’, ‘Power’, ‘Harrington’ and ‘Scarlett’ were the most resistant among the non mlo cultivars. Severity of PM on ‘Primus’ reached a score of 3.5 (3.0 of PM necrosis) in average, the other cultivars were diseased from 4.5 (3.0) to 5.0 (2.0). The AUDPC values for these cultivars except ‘Scarlett’ were the lowest (85.0–145.3) among the other cultivars. The highest contrast in development of the other leaf diseases was between highly resistant and susceptible to PM cultivar groups. The fast development of PM depressed development of the other diseases 4.7 times.  相似文献   

12.
13.
Small RAC/ROP-family G proteins regulate development and stress responses in plants. Transient overexpression and RNA interference experiments suggested that the barley (Hordeum vulgare) RAC/ROP protein RACB is involved in susceptibility to the powdery mildew fungus Blumeria graminis f. sp. hordei. We created transgenic barley plants expressing the constitutively activated RACB mutant racb-G15V under control of the maize (Zea mays) ubiquitin 1 promoter. Individuals of the T1 generation expressing racb-G15V were significantly more susceptible to B. graminis when compared to segregating individuals that did not express racb-G15V. Additionally, racb-G15V-expressing plants showed delayed shoot development from the third leaf stage on, downward rolled leaves, and stunted roots. Expression of racb-G15V decreased photosynthetic CO(2)-assimilation rates and transpiration of nonstressed leaves. In contrast, racb-G15V-expressing barley leaves, when detached from water supply, showed increased water loss and enhanced transpiration. Water loss was associated with reduced responsiveness to abscisic acid in regard to transpiration when compared to segregants not expressing racb-G15V. Hence, RACB might be a common signaling element in response to both biotic and abiotic stress.  相似文献   

14.
The initial contact between Blumeria graminis f.sp. hordei and its host barley (Hordeum vulgare) takes place on epicuticular waxes at the surfaces of aerial plant organs. Here, the extent to which chemical composition, crystal structure and hydrophobicity of cuticular waxes affect fungal prepenetration processes was explored. The leaf surface properties of barley eceriferum (cer) wax mutants were characterized in detail. Barley leaves and artificial surfaces were used to investigate the early events of fungal infection. Even after epicuticular waxes had been stripped away, cer mutant leaf surfaces did not affect fungal prepenetration properties. Removal of total leaf cuticular waxes, however, resulted in a 20% reduction in conidial germination and differentiation. Two major components of barley leaf wax, hexacosanol and hexacosanal, differed considerably in their ability to effectively trigger conidial differentiation on glass surfaces. While hexacosanol, attaining a maximum hydrophobicity with contact angles of no more than 80 degrees, proved to be noninductive, hexacosanal significantly stimulated differentiation in c. 50% of B. graminis conidia, but only at contact angles > 80 degrees. These results, together with an observed inductive effect of highly hydrophobic, wax-free artificial surfaces, provide new insights into the interplay of physical and chemical surface cues involved in triggering prepenetration processes in B. graminis.  相似文献   

15.
Twenty-two landrace-derived inbred lines from the Spanish Barley Core Collection (SBCC) were found to display high levels of resistance to a panel of 27 isolates of the fungus Blumeria graminis that exhibit a wide variety of virulences. Among these lines, SBCC145 showed high overall resistance and a distinctive spectrum of resistance compared with the other lines. Against this background, the main goal of the present work was to investigate the genetic basis underlying such resistance using a doubled haploid population derived from a cross between SBCC145 and the elite spring cultivar Beatrix. The population was genotyped with the 1,536-SNP Illumina GoldenGate Oligonucleotide Pool Assay (Barley OPA-1 or BOPA1 for short), whereas phenotypic analysis was performed using two B. graminis isolates. A major quantitative trait locus (QTL) for resistance to both isolates was identified on the long arm of chromosome 6H (6HL) and accounted for ca. 60% of the phenotypic variance. Depending on the B. graminis isolate tested, three other minor QTLs were detected on chromosomes 2H and 7H, which explained less than 5% of the phenotypic variation each. In all cases, the alleles for resistance derived from the Spanish parent SBCC145. The position, the magnitude of the effect observed and the proportion of phenotypic variation accounted for by the QTL on 6HL suggest this is a newly identified locus for broad-based resistance to powdery mildew.  相似文献   

16.
17.
18.
19.
Circumstantial evidence from field experiments at Rothamsted suggested that effects of powdery mildew on grain filling in spring barley may be determined partly by temperature during the grain-filling period. An experiment was, therefore, done which compared the effects of fungicides applied to control powdery mildew on grain filling in early- and late-sown spring barley plants kept either out-of-doors throughout their growth (‘cool’ environment) or under the same conditions until the start of grain filling and then transferred to a heated glasshouse (‘warm’ environment) until harvested. Fungicides that controlled mildew increased the total grain yield of the late-sown barley more than that of the early-sown and much more in the warm environment than in the cool. On average, the effect of the fungicides in the cool environment was to increase grain yield by 17·7%. Small increases in numbers of grains/ear (+ 3·4%) and thousand-grain weight (TGW) (+ 2·3%) contributed to this increase but it could be attributed principally to an average increase in numbers of ears/plant of 12·4%. Contrastingly, fungicides increased average grain yield in the warm environment by 58·2%. Effects of the fungicides on numbers of ears/plant (+ 27·8%) and on numbers of grains/ear (+ 4·5%) were not significantly different to those in the cool environment, and the much greater responses in the warm than in the cool environment could be attributed mostly to much larger effects on grain size (+ 19·2%) The greater benefits of the fungicides and, by implication, the greater damage done by powdery mildew in the warm than in the cool environment cannot, unequivocally, be attributed to differences in temperature during grain-filling because the two environments clearly differed in other ways and especially in light intensity. Nevertheless, the results obtained do illustrate the potential risks involved in using data obtained under one set of circumstances to predict what will happen in another, especially when environments differ as greatly as glasshouses and fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号