首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solitary parasitoids of colony-forming hosts may produce quasi-gregarious broods, which favours sibmating on the natal patch and local mate competition (LMC). We examined seasonal variations in brood size and sex ratio in three species of solitary parasitoids of aphids associated with trophobiotic ants. Adialytus arvicola, a parasitoid of Sipha agropyrella on grasses, had the smallest broods (mean=4.2, maximum 19), while Lysiphlebus hirticornis, a parasitoid of Metopeurum fuscoviride on tansy, had the largest broods (mean=32.0, maximum 265). In Pauesia pini, a parasitoid of Cinara piceicola on Norway spruce, broods comprised an average of 5.8 (maximum 41) individuals; brood size increased during early summer when hosts became more available but remained the same later in the season. In all three species the sex ratio at eclosion was female-biased, with broods containing approximately two daughters for each son in both A. arvicola and L. hirticornis; the degree of female-bias was least in P. pini. The sex ratio did not vary with brood size. In A. arvicola, the variance of the number of sons declined with an increase in brood size, consistent with "precise" sex allocation. In contrast, in L. hirticornis, the overall sex-ratio variance was greater than its binomial expectation, while it did not differ from binomial in P. pini. A large proportion of broods contained only sons or only daughters, especially in A. arvicola. An excess of male-only broods is expected if constrained females (which can produce only sons) contribute offspring prior to mating. The number of male-only broods, however, did not differ from the number expected if all females are mated and allocate offspring sexes binomially, except in P. pini. In the latter species, broods with two daughters (as opposed to two sons) exceeded binomial expectations. We propose that P. pini is largely outbreeding, while the strongly female-biased sex ratio in A. arvicola and L. hirticornis is consistent with partial sibmating and LMC. Ant-parasitoid interactions could account for a different population mating structure in the three parasitoid species. Both A. arvicola and L. hirticornis mimic the epicuticular hydrocarbon pattern of their aphid hosts. Eclosing wasps are ignored by honeydew-collecting ants and hence can mate and forage on the natal patch. In contrast, P. pini generally depart the mummy area to avoid attacks by trophobiotic ants and mate off patch.  相似文献   

2.
Interactions between natural enemies can be crucial for determining their overall control of pest species, yet the mechanisms that govern such interactions are often poorly understood. The risk of negative effects such as intraguild predation and the possibility of mitigating such risks are important components for ultimately determining the compatibility of biological control agents. We performed a group of experiments to determine whether the coccinellid Harmonia axyridis Pallas (Coleoptera: Coccinellidae) poses an intraguild threat to the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) and to see whether A. ervi is able to avoid predation by responding to the chemical tracks deposited by H. axyridis. We show that although H. axyridis does not readily consume A. ervi mummies, it preferentially consumes parasitized aphids over unparasitized aphids. We also show that A. ervi can defend against this threat by avoiding oviposition in the presence of H. axyridis chemical tracks. Aphidius ervi parasitized far fewer pea aphids Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) on plants [Vicia faba L. (Fabaceae)] with H. axyridis chemical tracks in a no‐choice environment at a single‐plant scale. Similarly, when parasitoids could move freely between plants with and without tracks, A. ervi parasitism was higher on plants without tracks. Behavioral observations of A. ervi foraging suggested that this might be because of reduced A. ervi attack rates and patch residence times in the presence of H. axyridis tracks. Despite a risk of intraguild predation by H. axyridis, our study suggests that A. ervi may be able to mitigate this risk by altering its behavior in response to chemical cues.  相似文献   

3.
The solitary parasitoids Aphidius erviHaliday (Hymenoptera: Aphidiidae) and Aphelinus asychisWalker (Hymenoptera: Aphelinidae) attacked but generally did not oviposit in pea aphids parasitized by the other species. Wasps selectively oviposited in unparasitized hosts when given a choice. Host discrimination depended on the recognition of internal cues. Females of A. asychiseither could not recognize or ignored A. ervi'sexternal host marking pheromone. Under most conditions, A. ervisurvived in superparasitized hosts, killing competing A. asychislarvae by physical attack and possibly physiological suppression. The outcome of larval competition was not affected by oviposition sequence or age difference between larvae; A. asychissurvived only when it had substantially completed larval development before the host was superparasitized by A. ervi.It is suggested that competition for host resources incurs a cost, for the winner in terms of reduced size or increased development time and for the loser in terms of lost progeny and searching time. Consequently, heterospecific host discrimination can be functional. Internal, and probably general, cues enable wasps to recognize and avoid oviposition in hosts already parasitized by an unrelated species.  相似文献   

4.
We determined the age-specific fecundity and survival of the solitary parasstoid wasp,Aphidius ervi Haliday (Hymenoptera: Aphidiidae), under constant laboratory conditions. Wasps were reared in each of the four nymphal instars of apterous pea aphids,Acyrthosiphon pisum (Harris) (Homoptera: Aphididae): L1 (age 24h), L2 (48 h), L3 (72 h), and L4 (120 h). Age-specific survival (lx) and fecundity (mx) differed between parasitoids developing in different aphid instars. The wasps’ life-time reproductive success, as indexed by the intrinsic rate of population increase (rm), varied non-linearly with adult biomass and host size at parasitization. A close agreement between larval growth rates in different host instars and adult reproductive performance suggests that, inA. ervi, fitness correlates may be significantly influenced by larval ontogeny and trade-offs in resource allocation.  相似文献   

5.
The Palaeoarctic parasitoid Aphidius ervi Haliday (Hymenoptera, Aphidiidae) parasitises legume aphids in its region of origin. In Chile, it parasitises both legume and cereal aphids. This special situation was studied at two levels: (i) the host searching behaviour of A. ervi from two different tritrophic systems (Acyrthosiphon pisum on alfalfa and Sitobion avenae on wheat) was investigated in dual choice tests in a wind tunnel between odours from both A. pisum-alfalfa host plant complex (HPC) and S. avenae-wheat HPC, and (ii) the genetic structure of A. ervi populations from both sources using molecular markers. Responses of A. ervi females to volatile olfactory cues emanating from A. pisum-alfalfa HPC and S. avenae-wheat HPC were significantly higher towards the HPC on which they were reared during the last generation before experimentation, regardless of the origin of the parasitoid. As previously described for this parasitoid species, oviposition experience was also of major relevance in the preferences of female parasitoids. On the other hand, variation in mitochondrial DNA segments and RAPD-PCR polymorphism using total DNA showed the absence of host-based population structure and a high genetic homogeneity between these A. ervi populations. These results reject the possible existence of different host-strains of this parasitoid in Chile.  相似文献   

6.
Two-day-old mated females ofAphidius ervi Haliday andMonoctonus paulensis (Ashmead) were each provided with two sequential host patches. Patches were comprised of plastic petri dishes containing either 15 pea aphids,Acyrthosiphum pisum (Harris), or 15 alfalfa aphids,Macrosiphum creelii Davis. Both wasp species parasitized more hosts in patches containing pea aphids than in those containing alfalfa aphids, regardless of sequence. Females ofA. ervi also laid more eggs per aphid in patches containing pea aphids than in patches containing alfalfa aphids. When both patches contained alfalfa aphids,M. paulensis females parsitized more aphids in the second patch than in the first. Fewer alfalfa aphids were parasitized in the second patch when the first patch contained pea aphids, and fewer eggs were laid per alfalfa aphid. Parasitoid females of both species exhibited consistently higher rates of oviposition into their preferred host species and adjusted their reproductive allocation to hosts and host patches as a function of their experience in previous patches.  相似文献   

7.
Abstract 1. In solitary parasitoids, several species can exploit the same host patch and competition could potentially be a strong selective agent as only one individual can emerge from a host. In cereal crops, Aphidius rhopalosiphi and A. ervi share the grain aphid Sitobion avenae as host. 2. The present work studied foraging strategies of both species on patches already exploited by the other species. The study analysed larval competition in multi‐parasitised hosts and compared the foraging behaviour of females with and without previous experience. 3. It was found that A. ervi wins larval competition three times more often than A. rhopalosiphi. Both species spent less time on patches exploited by a heterospecific than on unexploited ones. When they foraged on heterospecifically exploited patches, experienced females induced less mortality in aphids than inexperienced ones. 4. Although A. rhopalosiphi is a specialist on cereal aphids and is the most abundant species due to its early appearance in the season, S. avenae is still a profitable host for A. ervi, because: (i) A. rhopalosiphi leaves patches partially exploited, (ii) A. ervi wins larval competition in three out of four multi‐parasitised hosts, and (iii) A. ervi is only slightly deterred by the cornicular secretions of the host and can thus easily parasitise hosts.  相似文献   

8.
Impact of a parasitoid on the bacterial symbiosis of its aphid host   总被引:2,自引:0,他引:2  
Embryo production in aphids is absolutely dependent on the function of symbiotic bacteria, mainly Buchnera, and the growth and development of koinobiont parasitoids in aphids requires the diversion of nutrients from aphid embryo production to the parasitoid. The implication that the bacterial symbiosis may be promoted in parasitized aphids to support the growing parasitoid was explored by analysis of the number and biomass of mycetocytes, and the aphid cells bearing Buchnera, in the pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) parasitized by the wasp Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids hosting a young larval parasitoid bore more mycetocytes of greater total biomass, and embryos of lower biomass than unparasitized aphids. Furthermore, one of the three aphid clones tested, which limited teratocyte growth (giant cells of parasitoid origin having a trophic role), bore smaller mycetocytes and larger embryos, than one or both of the two aphid clones with greater susceptibility to the parasitoid. These data suggest that susceptibility of the aphid‐Buchnera symbiosis to parasitoid‐mediated manipulation may, directly or indirectly, contribute to aphid susceptibility to parasitoid exploitation.  相似文献   

9.
Many parasitoid species have preference for certain stages of hosts to parasitize but the underlying behavioral mechanisms of such preference are still poorly understood, making it difficult to evaluate host-parasitoid interactions and their effects on the success of biological control programs. Here, we report our work on a parasitoid Aphidius ervi Haliday on the pea aphid Acyrthosiphon pisum (Harris). We show that with the increase of host age, female parasitoids are more likely to encounter and to attack their hosts but the hosts develop increasingly greater defensive capabilities. Encounter almost always triggers attack attempt; however, increasing attack attempts do not proportionally lead to ovipositor probings and increasing ovipositor probings do not proportionally translate into ovipositions. These asymmetric responses may be interpreted as that A. ervi females prefer to parasitize older aphids for higher fitness return but those aphids can better defend themselves, and as a consequence, A. ervi females may achieve the highest gain by attacking aphids of intermediate ages. We suggest that A. ervi females forage in a manner consistent with the optimal foraging theory, trading off host handling time with fitness returns.  相似文献   

10.
Learning, defined as changes in behavior that occur due to past experience, has been well documented for nearly 20 species of hymenopterous parasitoids. Few studies, however, have explored the influence of learning on population-level patterns of host use by parasitoids in field populations. Our study explores learning in the parasitoid Aphidius ervi Haliday that attacks pea aphids, Acyrthosiphon pisum (Harris). We used a sequence of laboratory experiments to investigate whether there is a learned component in the selection of red or green aphid color morphs. We then used the results of these experiments to parameterize a model that examines whether learned behaviors can explain the changes in the rates of parasitism observed in field populations in South-central Wisconsin, USA. In the first of two experiments, we measured the sequence of host choice by A. ervi on pea aphid color morphs and analyzed this sequence for patterns in biased host selection. Parasitoids exhibited an inherent preference for green aphid morphs, but this preference was malleable; initial encounters with red aphids led to a greater chance of subsequent orientation towards red aphids than predicted by chance. In a second experiment, we found no evidence that parasitoids specialize on red or green morphs; for the same parasitoids tested in trials separated by 2 h, color preference in the first trial did not predict color preference in the second, as would be expected if they differed in fixed preferences or exhibited long-term (> 2 h) learning. Using data from the two experiments, we parameterized a population dynamics model and found that learning of the magnitude observed in our experiments leads to biased parasitism towards the most common color morph. This bias is sufficient to explain changes in the ratio of aphid color morphs observed in field sites over multiple years. Our study suggests that for even relatively simple organisms, learned behaviors may be important for explaining the population dynamics of their hosts.  相似文献   

11.
Plant virus and parasitoid interactions in a shared insect vector/host   总被引:2,自引:0,他引:2  
Interactions between barley yellow dwarf luteovirus (BYDV) and the aphid parasitoid, Aphidius ervi Haliday (Hymenoptera: Aphidiidae), were investigated while sharing the vector/host, Sitobion avenae (F.) (Homoptera: Aphididae). Aphids, which were parasitized during their second larval stadium, had access to virus-infected plants before, immediately after, or several days after parasitoid attack. The larval development of A. ervi in S. avenae was significantly delayed when virus acquisition took place before or shortly after the parasitoid had hatched, but not when the parasitoid was at the second larval stage during virus acquisition. Similarly, the presence of BYDV led to a significantly higher aphid mortality when they acquired virus up to and including the time that A. ervi was at the first larval stage. Adult female parasitoids deposited fewer eggs in viruliferous aphids. Virus transmission was not reduced by parasitization, and in some experiments aphids which were subjected to parasitoid attack transmitted BYDV more efficiently than unattacked insects.  相似文献   

12.
The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae) is found in red and green color morphs. Previous work has suggested that the aphidiine parasitoid Aphidius ervi Haliday preferentially attacks green pea aphids in the field. It is not clear whether these results reflect a real preference, or some unknown clonal difference, such as in immunity, between the aphids used in the previous studies. We used three susceptibility-matched pairs of red and green morph pea aphid clones to test for preferences. In a no-choice situation, the parasitoids attacked equal proportions of each color morph. When provided with a choice, A. ervi was significantly more likely to oviposit into colonies formed from green morphs when the neighboring colony was formed from red morph aphids. In contrast, red morphs were less likely to be attacked when their neighboring colony was of the green morph. By preferentially attacking green colonies, A. ervi may reduce the likelihood of intraguild predation, as it is suggested that visually foraging predators preferentially attack red aphid colonies. Furthermore, if this host choice behavior is replicated in the field, we speculate that color morphs of the pea aphid may interact indirectly through their shared natural enemies, leading to intraspecific apparent competition.  相似文献   

13.
Oviposition by a parasitoid wasp in an already parasitized host (= superparasitism) may result in larval competition and the loss of offspring. Consequently, in solitary species, the decision to superparasitize should be based on the probability of offspring survival. Females of Aphidius ervi Haliday and A. smithi Sharma & Subba Rao (Hymenoptera: Aphidiidae), two parasitoids of the pea aphid, discriminated between conspecific-and heterospecific-parasitized hosts. Both species showed partial preference for aphids previously attacked by A. smithi, a result predicted from the fact that A. ervi is superior to A. smithi in larval competition under most conditions. Females of A. smithi selectively attacked conspecific-parasitized pea aphids when given a choice between these and self-parasitized hosts. Results indicated that females of both species responded to an external pheromone-like marker to discriminate between selfconspecific-and heterospecific-parasitized aphids. In addition, A. smithi may use internal cues to recognize, and avoid oviposition in, aphids previously parasitized by A. ervi.
Résumé L'oviposition par une guêpe parasite dans un hôte qui a déjà été parasité (= superparasitisme) pourrait conduire à une compétition entre larves et à une perte de progéniture. Par conséquent, dans les espèces solitaires, la décision de superparasiter devrait être basée sur la probabilité de survie de la progéniture. Les femelles de Aphidius ervi Haliday et de A. smithi Sharma & Subba Rao (Hymenoptera: Aphidiidae), deux parasites du puceron du pois, ont discriminé entre les hôtes parasités par des individus de la même espèce et ceux parasités par des individus d'une espèce différente. Les deux espèces de parasite ont montré une préférence partielle pour les pucerons préalablement parasités par A. smithi, résultat qui était prévisible du fait que, dans la majorité des cas, A. ervi est supérieur à A. smithi dans la compétition entre larves. Les femelles de A. smithi ont sélectivement attaqué les pucerons parasités par un individu de la même espèce lorsqu'il leur était donné de choisir parmi ceux-ci et ceux parasités par les même individu. Les résultats indiquaient que les femelles des deux espèces répondaient à une sorte de phéromone externe pour distinguer les pucerons parasités par le même individu de ceux parasités par un individu de la même espèce et ceux parasités d'une autre espèce. En plus, A. smithi pourrait utiliser des signaux internes pour reconnaître et éviter l'oviposition dans les pucerons préalablement parasités par A. ervi.
  相似文献   

14.
1. Insect population size is regulated by both intrinsic traits of organisms and extrinsic factors. The impacts of natural enemies are typically considered to be extrinsic factors, however insects have traits that affect their vulnerability to attack by natural enemies, and thus intrinsic and extrinsic factors can interact in their effects on population size. 2. Pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in New York and Maryland that are specialised on alfalfa are approximately two times more physiologically resistant to parasitism by Aphidius ervi Haliday (Hymenoptera: Braconidae) than pea aphids specialised on clover. To assess the potential influence of this genetically based difference in resistance to parasitism on pea aphid population dynamics, pea aphids, A. ervi, and other natural enemies of aphids in clover and alfalfa fields were sampled. 3. Rates of successful parasitism by A. ervi were higher and pea aphid population sizes were lower in clover, where the aphids are less resistant to parasitism. In contrast, mortality due to a fungal pathogen of pea aphids was higher in alfalfa. Generalist aphid predators did not differ significantly in density between the crops. 4. To explore whether intrinsic resistance to parasitism influences field dynamics, the relationship between resistance and successful field parasitism in 12 populations was analysed. The average level of resistance of a population strongly predicts rates of successful parasitism in the field. The ability of the parasitoid to regulate the aphid may vary among pea aphid populations of different levels of resistance.  相似文献   

15.
Abstract.
  • 1 We tested switching behaviour in four species of aphidiid parasitoids, using a two-aphid experimental system consisting of second-instar nymphs of pea aphid (Acyrthosiphon pisum (Harris)) and alfalfa aphid (Macrosiphum creelii Davis) feeding on broad beans in the laboratory.
  • 2 Aphidius ervi Haliday, A.pisivorus Smith, A.smithi Sharma & Subba Rao, and Pram pequodorum Viereck showed an innate preference for pea aphid when both host species were provided in equal numbers.
  • 3 Wasps encountered both aphid species equally but differed in their acceptance of alfalfa aphid. Females of A.pisivorus and P.pequodorum accepted alfalfa aphids when few pea aphids were available, but A. smithi always concentrated attacks on pea aphid. Aphidius ervi super-parasitized an increasing proportion of pea aphids as their availability declined.
  • 4 Switching to the alfalfa aphid occurred in A.ervi and P.pequodorum (but not in A.pisivorus and A.smithi) under the condition of a 1:3 ratio of pea aphids:alfalfa aphids. Wasps did not switch when more pea aphids than alfalfa aphids were provided (3:1 ratio).
  • 5 Alfalfa aphids were more likely than pea aphids to escape from parasitoid attack.
  • 6 Switching to the most abundant host may not be adaptive in these four species of aphid parasitoids. A foraging wasp incurs a potentially higher cost in lost opportunity time when attacking (and failing to oviposit in) alfalfa aphids. In addition, alfalfa aphids may have lower host quality than pea aphids, a difference that could influence offspring fitness.
  相似文献   

16.
Interaction between a predator and a parasitoid attacking ant-attended aphids was examined in a system on photinia plants, consisting of the aphid Aphis spiraecola, the two ants Lasius japonicus and Pristomyrmex pungens, the predatory ladybird beetle Scymnus posticalis, and the parasitoid wasp Lysiphlebus japonicus. The ladybird larvae are densely covered with waxy secretion and are never attacked by attending ants. The parasitoid females are often attacked by ants, but successfully oviposit by avoiding ants. The two ants differ in aggressiveness towards aphid enemies. Impacts of the predator larvae and attending ant species on the number of parasitoid adults emerging from mummies per aphid colony were assessed by manipulating the presence of the predator in introduced aphid colonies attended by either ant. The experiment showed a significant negative impact of the predator on emerging parasitoid numbers. This is due to consumption of healthy aphids by the predator and its predation on parasitized aphids containing the parasitoid larvae (intraguild predation). Additionally, attending ant species significantly affected emerging parasitoid numbers, with more parasitoids in P. pungens-attended colonies. This results from the lower extent of interference with parasitoid oviposition by the less aggressive P. pungens. Furthermore, the predator reduced emerging parasitoid numbers more when P. pungens attended aphids. This may be ascribed to larger numbers of the predator and the resulting higher levels of predation on unparasitized and parasitized aphids in P. pungens-attended colonies. In conclusion, a negative effect of the predator on the parasitoid occurs in ant-attended aphid colonies, and the intensity of the interaction is affected by ant species.  相似文献   

17.
Females of the solitary aphid parasitoids Aphidius ervi Haliday and A. smithi Sharma & Subba Rao (Hymenoptera: Aphidiidae) discriminated between unparasitized pea aphids and those parasitized by the other species. Oviposition restraint varied with the attack sequence and the length of the interval between successive attacks. The tendency to reject a previously parasitized host increased with interval length; A. smithi females rarely oviposited in aphids that had been parasitized 30 h earlier by A. ervi. Early first-instar larvae of A. ervi physically attacked and killed older A. smithi larvae, and older A. ervi larvae killed younger A. smithi, possibly by physiological suppression. Neither species appeared to have a competitive advantage when their eggs hatched at the same time. The evolution of heterospecific host discrimination in A. ervi and A. smithi is discussed. It is suggested that avoidance of multiparasitism is adaptive for both parasitoid species: for A. smithi because it is the inferior larval competitor, and for A. ervi because immatures develop more slowly in multiparasitized than in initially unparasitized hosts.
Compétition interspécifique et discrimination des hôtes chez deux parasitoïdes de pucerons: Aphidius ervi et A. smithi
Résumé Les femelles des parasitoïdes de pucerons: Aphidius ervi Haliday et A. smithi Sharma & Subba Rao (Hyméno. Aphidiidae) distinguent les pucerons du pois sains des parasités par d'autres espèces. La rétention de la ponte dépend de la séquence de l'attaque et du temps écoulé entre des attaques successives. La tendance au rejet d'un puceron précédemment parasité augmente avec l'importance du délai; A. smithi a rarement pondu dans des pucerons qui avaient été parasités 30 h avant par A. ervi. Les jeunes larves de premier stade de A. ervi ont attaqué physiquement et tué les larves plus âgées de A. smithi, et les larves plus âgées de A. ervi ont tué des larves plus jeunes de A. smithi par élimination physiologique. Aucune espèce ne semble avoir un avantage quand les oeufs ont éclos en même temps. L'évolution de la discrimination interspécifique de l'hôte chez A. ervi et A. smithi est discutée. On estime que la tendance à éviter le multiparasitisme est adaptative chez les 2 espèces: pour A. smithi parce qu'il est dominé dans la compétition larvaire et pour A. ervi parce que les larves se développent plus lentement dans un hôte multiparasité que dans un hôte initialement sain.
  相似文献   

18.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

19.
The reproductive success of female parasitoids is dependent on their ability to accurately assess the suitability of a host for larval development. For generalist parasitoids, which utilize a broad range of species and instars as hosts, a set of assessment criteria determines whether a host is accepted or rejected. The suitability of a host, however, can only be imperfectly assessed by the female parasitoid, which can result in the selection of lesser quality hosts for oviposition. In this study we explored the disparity between host quality and host preference using the generalist koinobiotic parasitoid Aphidius ervi Haliday (Hymenoptera: Aphidiidae) and the host Aulacorthum solani (Harris) (Homoptera: Aphididae), the foxglove aphid. The second instar hosts produced the highest level of reproductive success, while third and fourth instars resulted in a substantially reduced reproductive performance. When given a choice of host instars, parasitoids preferred the older hosts for oviposition disregarding their reduced suitability for larval development. Results are discussed in context of mechanisms involved in A. ervi host selection and biases in the criteria used to assess hosts that may arise when parasitoids transfer host species between generations.  相似文献   

20.
Larvicidal activity of lectins onLucilia cuprina: mechanism of action   总被引:1,自引:0,他引:1  
Foraging behaviour and host-instar preference of young and old females of the solitary aphid parasitoid,Lysiphlebus cardui Marshall (Hymenoptera: Aphidiidae), were studied in the laboratory. The analysis of interactions between parasitoids and different stages ofAphis fabae cirsiiacanthoidis Scop. (Homoptera: Aphididae) revealed that encounter rates between aphids and parasitoid females and defence reactions of the aphids influenced the degree to which a particular aphid age class is parasitized. Encounter rates between hosts and parasitoid females depended on the foraging pattern of the parasitoid, which varied with age. In mixed aphid colonies patch residence time increased with parasitoid age. Furthermore, younger parasitoids (≦1 day old) laid more eggs into second and third instars, while older parasitoids (≧4 days old) did not show distinct host instar preferences. It is suggested that the oviposition behaviour ofL. cardui is influenced by the physiological state, i.e. the age of the wasp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号