首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the species composition and/or functioning of many ecosystems currently changing due to anthropogenic drivers it is important to understand and, ideally, predict how changes in one part of the ecosystem will affect another. Here we assess if vegetation composition or soil chemistry best predicts the soil microbial community. The above and below-ground communities and soil chemical properties along a successional gradient from dwarf shrubland (moorland) to deciduous woodland (Betula dominated) were studied. The vegetation and soil chemistry were recorded and the soil microbial community (SMC) assessed using Phospholipid Fatty Acid Extraction (PLFA) and Multiplex Terminal Restriction Fragment Length Polymorphism (M-TRFLP). Vegetation composition and soil chemistry were used to predict the SMC using Co-Correspondence analysis and Canonical Correspondence Analysis and the predictive power of the two analyses compared. The vegetation composition predicted the soil microbial community at least as well as the soil chemical data. Removing rare plant species from the data set did not improve the predictive power of the vegetation data. The predictive power of the soil chemistry improved when only selected soil variables were used, but which soil variables gave the best prediction varied between the different soil microbial communities being studied (PLFA or bacterial/fungal/archaeal TRFLP). Vegetation composition may represent a more stable ‘summary’ of the effects of multiple drivers over time and may thus be a better predictor of the soil microbial community than one-off measurements of soil properties.  相似文献   

2.
Shinoda  Yushin  Akasaka  Munemitsu 《Plant Ecology》2019,220(6):595-603

An understanding of relationships between species diversity and disturbance gradient is important to comprehend the role of disturbances in the structure of plant communities. Although some studies have demonstrated incongruence in diversity–disturbance relationships (hereafter DDRs) between aboveground vegetation and soil seedbank, the process that causes the difference remains unclear. This incongruence between the two DDRs could result in the decrease in the source of recovery of aboveground vegetation following disturbances being overlooked when only aboveground vegetation is surveyed. Here, we verified a process that species turnover across the disturbance gradient causes the incongruence. Based on a vegetation and seedbank survey, we examined DDRs and species turnover of aboveground vegetation and seedbank along disturbance duration (i.e., excluding years of ungulate grazing). The degree of species turnover was considerably greater in aboveground vegetation than in seedbank; thus, the degree of species turnover along a disturbance gradient caused the difference in DDR between aboveground vegetation and seedbank.

  相似文献   

3.
The production of artificial snow and the use of snow additives in ski resorts have increased considerably during the last 20 years. Their ecological consequences are the subject of environmental concerns. This review compiles studies about the ecological implications of ski pistes preparation in general and of artificial snow production. The main direct impacts of ski piste preparation on the vegetation are related to the compaction of the snow cover, namely the induction of soil frost, the formation of ice layers, mechanical damage and a delay in plant development. The vegetation reacts with changes in species composition and a decrease in biodiversity. Artificial snowing modifies some of these impacts: The soil frost is mitigated due to an increased insulation of the snowpack, whereas the formation of ice layers is not considerably changed. The mechanical impacts of snow-grooming vehicles are mitigated due to the deeper snow cover. The delay of the vegetation development is enhanced by a considerably postponed snowmelt. Furthermore, artificial snowing induces new impacts to the alpine environment. Snowing increases the input of water and ions to ski pistes, which can have a fertilising effect and hence change the plant species composition. Increasingly, snow additives, made of potentially phytopathogenic bacteria, are used for snow production. They enhance ice crystal formation due to their ice nucleation activity. Although sterilised, additives affected the growth of some alpine plant species in laboratory experiments. Salts are applied not only but preferably on snowed pistes to improve the snow quality for ski races. The environmental impacts of most salts have not yet been investigated, but a commonly used nitrate salt has intense fertilising properties. Although snowing mitigates some of the negative impacts of ski piste preparation in general, new impacts induced by snowing could be non-beneficial to the vegetation, which, however, has yet to be clarified.  相似文献   

4.
Since the middle of the 19th century, the area covered by forests in France has doubled. These new forests grow on previous agricultural lands. We have studied the influence of this agricultural history on the 15N abundance of present-day forests planted on farmlands in the Vosges mountains (north-eastern France) between 1898 and 1930. Different types of land use were identified from old cadastres (1814–1836) of 16 farms. Ancient forests adjacent to farmlands were used as controls. Former pastures, meadows, croplands, gardens and ancient forests were compared for soil δ15N (fraction <50 μm and total soil), C/N, P and N content and fern (Dryopteris carthusiana) δ15N. The mean δ15N of soil increased in the order ancient forests (+0.0‰)<pastures (+1.4‰)<croplands (+1.6‰)<meadows (+2.5‰)<gardens (+3.8‰). This increase in soil δ15N with the intensity of former land use was related to the former input of 15N-enriched manure, and to an activation of soil nitrification leading to 15N-depleted nitrate export on previously manured parcels. Fern δ15N increased in the same order as soil δ15N in relation to past land use. The mean δ15N of fern in ancient forests (–4.4‰) and former pastures (–3.4‰) was 5‰ lower than soil δ15N and the two variables were strongly correlated. The δ15N of fern in formerly manured parcels varied little (cropland: –2.7‰, meadows: –2.6‰ and gardens: –2.2‰) and independently of soil δ15N, suggesting that the soil sources of fern N differed between unmanured and manured parcels. Understorey plant δ15N and soil δ15N appear to be excellent tracers of previous land use in forests, and could be used in historical studies. The persistence of high isotopic ratios in previously manured parcels, almost a century after afforestation, suggests a long-term influence of former land use on the N cycle in forest soils. Received: 22 January 1999 / Accepted: 22 July 1999  相似文献   

5.
Land-use legacies are recognized determinants of vegetation dynamics and plant community assembly. The duration of these legacies and how they influence the structure of vegetation communities developing naturally in nutrient-poor ecosystems is not well understood. Here, we focus on the effects of increased nutrient availability from previous agricultural practices on multiple vegetation properties in a heathland where agriculture and domestic grazing ceased near 1870 and 1895, respectively. We compared diversity, compositional and functional properties of the vegetation responses to land-use legacies in the soil between areas with different agricultural histories (previously cultivated vs. uncultivated). Diversity measures were found to be higher in the previously cultivated soils. β-diversity was mainly driven by changes in species relative cover and increased with increasing nutrient availability in the cultivated area. Furthermore, functional traits related to nutrient acquisition (SLA and Leaf Nitrogen content) and the changes in vegetation composition were directly linked to soil properties only in the previously cultivated part of the heathland. Together these results revealed a shift to a deterministic control of the plant community, where increased nutrient availability leads to stronger associations between soil and vegetation properties. This suggests that as nutrients become available, niche differentiation and competitive interactions become the predominant underlying mechanisms structuring the community. Our study shows that land-use legacies of moderate intensity can alter the assembly mechanisms and diversity patterns in unmanaged vegetation that can be maintained after more than a century since cessation of agricultural practice. Identifying land-use legacies and understanding how they structure heathland communities can thus lead to management decisions adapted to the specific assembly mechanisms and result in a more effective management.  相似文献   

6.
Water retention characteristics, rainfall, throughfall and soil water content dynamics were investigated in a low mountain area to compare a forest and a grassland. The soil water retention curve of the topsoil has similar shape in both studied areas, however that of the deeper soil layer shows more difference. We determined the precipitation depth, duration and intensity values of rainfall events. The relationship between rainfall and throughfall depth was described in linear regressions. Interception was calculated as the difference between rainfall and throughfall plus stemflow, assuming stemflow to be 3% of rainfall. Soil water content dynamics show a similar trend in the two vegetation types but the drying is more intensive in the forest in the soil layers deeper than 20 cm during the growing-season.  相似文献   

7.

Aim

To assess whether vegetation composition and soil chemistry explain the same or different parts of the variation in the soil microbial community (SMC).

Method

The above and below-ground communities and soil chemical properties were studied along a successional gradient from moorland to deciduous woodland. The SMC was assessed using PLFAs and M-TRFLPs. Using variance partitioning, Co-Correspondence Analysis (CoCA) and Canonical Correspondence Analysis (CCA), the variation (total inertia) in the SMC was partitioned into variation which was uniquely explained by either plant composition or soil chemistry, variation explained by both soil chemistry and plant composition, and unexplained variation.

Results

Plant community composition uniquely explained 30, 13, 16 and 20% of the inertia and soil chemistry uniquely explained 5, 18, 9 and 9% of the inertia in the archaeal TRFLPs, bacterial TRFLPs, fungal TRFLPs and all PLFAs, respectively.

Conclusion

For the first time, variance partitioning was used to include data from a CoCA; although the current limits of such an approach are shown, this study illustrates the potential of such analyses and shows that soil chemistry and plant composition are, in substantial amounts, explaining different parts of the variation within the SMC. This marks an important step in furthering our understanding of the relative importance of different drivers of change in the SMC.  相似文献   

8.
Aims This study aims to evaluate the impacts of future climate change on vegetation and soil carbon accumulation rate in China's forests. Methods The vegetation and soil carbon storage were predicted by the atmosphere-vegetation interaction model (AVIM2) based on B2 climate change scenario during the period of 1981 2040. This study focused on mature forests in China and the forested area maintained constant over the study period. The carbon accumulation rate in year t is defined as the carbon storage of year t minus that of year t 1. Important findings Under B2 climate change scenario, mean air temperature in China's forested area was projected to rise from 7.8 °C in 1981 to 9.0 °C in 2040. The total vegetation carbon storage was then estimated to increase from 8.56 Pg C in 1981 to 9.79 Pg C in 2040, meanwhile total vegetation carbon accumulation rate was estimated to fluctuate between 0.054 0.076 Pg C•a1, with the average of 0.022 Pg C•a1. The total soil carbon storage was estimated to increase from 30.2 Pg C in 1981 to 30.72 Pg C in 2040, and total soil carbon accumulation rate was estimated to vary in the range of 0.035 0.072 Pg C•a1, with the mean of 0.010 Pg C•a1. The response of vegetation and soil carbon accumulation rate to climate change had significant spatial difference in China although the two time series did not show significant trend over the study period. Our results also showed warming was not in favor of forest carbon accumulation, so in the northeastern and southeastern forested area, especially in the Changbai Mountain, with highest temperature increase in the future, the vegetation and soil carbon accumulation rate were estimated to decrease greatly. However, in the southern of southwestern forested area and other forested area, with relatively less temperature increase, the vegetation and soil carbon accumulation rate was estimated to increase in the future.  相似文献   

9.
10.
Biogenic volatile organic compounds (BVOCs) are continually emitted from plants and are also a component of smoke during vegetation fire. Although vegetation fire events have been shown to have implications for the dynamics of soil water repellency (SWR) and there have been anecdotal reports that forest smoke can induce water repellency, the role of BVOCs in this process has not been explored. Accordingly, we investigated a selection of major BVOCs (cis-3-hexen-1-ol; levoglucosenone; 2-methyl-3-buten-2-ol; cineole; α-phellandrene; α-terpinene) that are emitted from the dominant native vegetation of Australia during fire. The potential of each compound to induce SWR was investigated by applying different loadings on acid washed sand (AWS) (300–350 µm diameter) and then assessing water repellency with the molarity of ethanol drop test. A long-chain amphiphilic molecule (palmitic acid) was also applied to AWS for comparison. Although palmitic acid was effective at inducing water repellency, the BVOCs were not, even at high loadings (5 × 10?4 mol g?1). Fully atomistic molecular dynamics simulations complemented the experimental measurements. These studies suggested that poor expression of water repellency by the BVOCs could be explained by their tendency to exhibit weak interactions towards the quartz surface but strong molecule–molecule attractions. In comparison, the long-chain amphiphilic molecules exhibited a balance between molecule–molecule and molecule–surface interactions that favored surface adhesion, which in turn led to the formation of a hydrophobic layer.  相似文献   

11.
For decades, arid desert ecosystems in northwest China, covering one-fourth the country’s land surface, have experienced a rapid decline in plant species diversity, productivity and soil carbon stock owing to degradation by overgrazing. In this study, plant community composition, diversity and productivity, as well as soil carbon (C) and nitrogen (N) stocks, were monitored over 26 years from 1981 to 2006 in a severely degraded Haloxylon ammodendron-dominated shrubland where livestock densities were reduced from 4–5 to 1–2 dry sheep equivalent ha-1. The objective was to assess long-term grazing effects on vegetation and soil C and N accumulation dynamics. Results showed that the reduction of grazing pressure significantly increased vegetation cover, plant diversity and productivity, resulting primarily from an increase in livestock-preferred species. Controlled grazing also led to marked increases in soil C and N stocks in the top 30 cm of soil. This increase was strongly associated with increased plant species richness, vegetation cover and biomass production. Averaged over 26 years, soil C and N accumulated at rates of 89.9 g?C and 8.4 g?N m-2?year-1, respectively, but rates of C and N accumulation varied greatly at different time periods. The greatest species regeneration occurred in the first 8 years, but the largest C and N accumulation took place during years 9–18, with a time-lag in response to changes in vegetation. Our results provide insights into the long-term recovery patterns of different ecosystem components from the influence of prolonged overgrazing disturbance that cannot be inferred from a short-term study. The findings are important for assessing the resilience of these livestock-disturbed desert ecosystems and developing a more effective strategy for the management of this important biome from a long-term perspective.  相似文献   

12.
Using a space-for-time substitution approach, we investigated the effects of a typhoon on the vegetation and soil development trajectories of monospecific stands of Rhizophora mucronata mangroves of different ages (6-, 8- 10-, 11-, 12-, 17-, 18- and 50-year stands). The vegetation and soil parameters were compared to a reference system comprised of mature, natural mangrove stands. Pre-typhoon measures of vegetation and soil parameters were compared with 1-mo, 7-mo and 9-mo post-typhoon. Prior to the occurrence of the typhoon, there were clear patterns of vegetation and soil development with age of the stands. The development trajectory was however interrupted by the occurrence of the typhoon. Severe damage was more apparent in older mangrove stands (11- and 18- year stands) with very low to no damage in the younger stands. The typhoon-impacted sites experienced a number of changes, including: complete defoliation; reduced living tree densities of 61–69 %; decreased above-ground biomass of 70–79 %; increased soil nutrient levels of 40–60 %; more waterlogged soils by at least 113 % and increased soil temperature of 8–10 °C. Cumulative tree mortality, compounded by the lack of seedling recruits and unfavourable soil conditions may limit long-term recovery of the typhoon-impacted stands.  相似文献   

13.
Intensive reindeer grazing has been hypothesized to drive vegetation shifts in the arctic tundra from a low-productive lichen dominated state to a more productive moss dominated state. Although the more productive state can potentially host more herbivores, it may still be less suitable as winter grazing grounds for reindeer, if lichens, the most preferred winter forage, are less abundant. Therefore, such a shift towards mosses may have severe consequences for reindeer husbandry if ground-growing lichens have difficulties to recover. We tested if reindeer cause this type of vegetation state shifts in boreal forest floor vegetation, by comparing plant species composition and major soil processes inside and outside of more than 40-year-old exclosures. Lichen biomass was more than twice as high inside exclosures than in grazed controls and almost 5 times higher than in heavily grazed patches. Contrary to our predictions, net N mineralization and plant production were higher in the exclosures than in the grazed controls. The lack of response of phytometer plants in a common garden bioassay indicated that changed soil moisture may drive effects of reindeer on plant productivity in these dry Pine forest ecosystems.  相似文献   

14.
The immigration of woody plants, especially Betula (tree birch), is examined in relation to geomorphological regions in a compilation of Late-glacial plant macrofossil records from Denmark. The immigration of trees led to a large ecological transformation of the landscape and had a major effect on the flora and fauna available to Palaeolithic people. We show that soil type was a controlling factor in the development of vegetation during the Allerød and Younger Dryas periods. Following the first immigration of trees during the Allerød period, woods became established in the eastern part of Denmark, where ice advances from the Baltic had deposited calcareous and clayey sediments. The western and northern parts of Denmark that are characterised by more sandy and non-calcareous sediments remained treeless throughout the whole Late-glacial period. Finds from the Bromme Culture are concentrated in the region which was wooded, suggesting that the regional variable environment allowed local adaptations using the diverse resources available.  相似文献   

15.
Does biochar influence soil physical properties and soil water availability?   总被引:10,自引:0,他引:10  

Aims

This study aims to (i) determine the effects of incorporating 47 Mg ha?1 acacia green waste biochar on soil physical properties and water relations, and (ii) to explore the different mechanisms by which biochar influences soil porosity.

Methods

The pore size distribution of the biochar was determined by scanning electron microscope and mercury porosimetry. Soil physical properties and water relations were determined by in situ tension infiltrometers, desorption and evaporative flux on intact cores, pressure chamber analysis at ?1,500 kPa, and wet aggregate sieving.

Results

Thirty months after incorporation, biochar application had no significant effect on soil moisture content, drainable porosity between –1.0 and ?10 kPa, field capacity, plant available water capacity, the van Genuchten soil water retention parameters, aggregate stability, nor the permanent wilting point. However, the biochar-amended soil had significantly higher near-saturated hydraulic conductivity, soil water content at ?0.1 kPa, and significantly lower bulk density than the unamended control. Differences were attributed to the formation of large macropores (>1,200 μm) resulting from greater earthworm burrowing in the biochar-amended soil.

Conclusion

We found no evidence to suggest application of biochar influenced soil porosity by either direct pore contribution, creation of accommodation pores, or improved aggregate stability.  相似文献   

16.
Generally, great efforts are made in measuring features of landfill covers. However, conventional physical or chemical parameters reach their limits in indicating the small scale changes of the habitats. Bio-indication is a proven tool to assess habitat conditions. The advantages of vegetation monitoring are obvious: cheap, easy, and integrating over time and space. Our study displays, how vegetation can indicate landfill cover features by adapting some common evaluation methods. Ellenberg's ecological indicator values were used, but ubiquitous species were excluded from multivariate data analysis of the Ellenberg values. Four groups of habitats were distinguished according to their cover material: (i) loamy substrates; (ii) wet hollows and areas with mature compost; (iii) fresh compost and mechanically biologically treated waste; (iv) slag from municipal solid waste incineration and leachate-influenced areas with fresh untreated waste or sewage sludge. The differences were assessed by ecological indices. The results give a promising impression of the potential vegetation monitoring has in the indication of landfill cover features.  相似文献   

17.
Vetterlein  Doris  Jahn  Reinhold 《Plant and Soil》2004,258(1):307-327
Soil solution composition changes with time and distance from the root surface as a result of mass flow, diffusion, plant nutrient uptake and root exudation. A model system was designed, consisting of a root compartment separated from the bulk soil compartment by a nylon net (30 m mesh size), which enabled independent measurements of the change of soil solution composition and soil water content with increasing distance from the root surface (nylon net). K+ concentration in the rhizosphere soil solution decreased during the initial growth stage (12 days after planting, DAP). Thereafter K+ accumulated with time, due to mass flow as the dominating process. The extend of K+ accumulation depended on the initial fertiliser application. As K+ concentrations in soil solution increase, not only as a result of transport exceeding uptake, but also as a result of decreasing soil water content, it is hypothesised that K concentration in soil solution is not the only trigger for the activity of K transporters in membranes, but ABA accumulation in roots induced by decreasing soil matric potentials may add to the regulation. A strong decrease of rhizosphere pH with time is observed as a result of H+ efflux from the roots in order to maintain cation-anion balance. In addition the K+ to Ca2+ ratio was altered continuously during the growing period, which has an impact on Ca2+ uptake and thus firmness of cell walls, apoplast pH, membrane integrity and activity of membrane transporters. The value of osmotic potential in the rhizosphere soil solution increased with time indicating decreasing soil water availability. Modelling approaches based on the data obtained with the system might help to fill in the time gaps caused by the low temporal resolution of soil solution sampling method.  相似文献   

18.
Abstract. Two sets of 40 relevés, made independently by two observers on the same 5m x 5m sample plots, were compared to estimate the sampling error and to assess the effect of this sampling error on (1) estimates of species richness and diversity (2) results of multivariate analyses, and (3) estimation of species turnover in repeated sampling. The relevés were made according to the standard Braun-Blanquet method. The sampling error was estimated for (1) recording of species in sample plots and (2) visual estimation of the degree of cover (or of the general population size). Despite the fact that the sample plots were searched thoroughly for 30 - 40 min, the number of overlooked species was high with a discrepancy of 13% between corresponding relevés. Regarding multivariate analysis, the error caused by missing species was at least as important as the error in visual estimation of species cover. The estimates of degree of cover using the Braun-Blanquet scale are sufficiently reliable for use in multivariate analysis when they are subjected to ordinal transformation. When average cover values are used, the patterns detected are based solely on dominants. Species richness and species diversity could be reliably estimated from the relevés, but the estimates of equitability are very unreliable. The classical relevé method remains one of the most efficient survey methods for recognition of vegetation types on the macro-community and landscape scales.  相似文献   

19.
Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil–water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic – Fusarium proliferatum, chrono-amphiphilic – Trichoderma harzianum, and hydrophobic – Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil.  相似文献   

20.
Despite the growing concern about the importance of silicon (Si) in controlling ecological processes in aquatic ecosystems, little is known about its processing in riparian vegetation, especially compared to nitrogen (N) and phosphorus (P). We present experimental evidence that relative plant uptake of N and P compared to Si in riparian vegetation is dependent on mowing practices, water-logging and species composition. Results are obtained from a controlled and replicated mesocosm experiment, with a full-factorial design of soil water logging and mowing management. In our experiments, the Si excluding species Plantago lanceolata was dominant in the mown and non-waterlogged treatments, while Si accumulating meadow grasses and Phalaris arundinacea dominated the waterlogged treatments. Although species composition, management and soil moisture interacted strongly in their effect on relative Si:N and Si:P uptake ratios, the uptake of N to P remained virtually unchanged over the different treatments. Our study sheds new light on the impact of riparian wetland ecosystems on nutrient transport to rivers. It indicates that it is essential to include Si in future studies of the impact of riparian vegetation on nutrient transport, as these are often implemented as a measure to moderate excessive N and P inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号