首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
The biological oxygen demand (BOD) of filtered water from Lake Wingra, Wisconsin is significantly higher in the littoral zone than in the pelagial zone. Laboratory experiments indicate that BOD is not influenced by water temperature at the time of sampling or by enrichment with nitrate or ammonia. Rather, enrichment with macrophyte leachate sharply increases BOD, and enrichment with phosphate produces a small but significant increase in BOD. We conclude that high BOD in littoral waters of the lake is an indication of production of labile organic matter in the water by dense beds of the macrophyte Myriophyllum spicatum.  相似文献   

2.
Photosynthetic production of organic matter, and its exoenzymaticdecomposition were studied in the euphotic zone of a naturallyeutrophic lake during early spring phytoplankton bloom, andafter its breakdown. Phytoplankton were the major biomass producerswhen algae were actively growing, and the algal fraction (>3.0µm) contributed on average 75–80% to the total biomassof microplankton. When the phytoplankton bloom began to declinebacterial biomass increased rapidly and, at the end of the bloom,bacteria contributed 48.7–69.98% to the total biomassof microplankton. The high bacterial abundance during phytoplanktonbloom breakdown followed the highest rates of glucose uptake,and the highest rates of alkaline phosphatase, leucine-amino-peptidase,ß-galactosidase and ß-glucosidase activities.The majority of enzyme activity was associated with the bacterialsize fraction of seston. The activities of free (dissolved inwater) exoenzymes were negligible. The synthesis of bacterialexoenzymes was under control of an induction/derepression mechanism,and depended on the amount of easily assimilable substrates,and/or the presence of polymeric organic compounds in the water,which served as substrates for exoenzymatic hydrolysis. Thetight metabolic coupling between bacterial exoenzymatic hydrolysisand uptake of low molecular weight substrates, and its ecologicalsignificance is discussed.  相似文献   

3.
The small, polyhumic lake, Mekkojärvi (southern Finland), is bordered by a moss vegetation zone (Warnstorfia and Sphagnum species) which provides a habitat-rich and productive environment for many planktonic and periphytic animals. Impacts of moss on the metabolism of bacterioplankton, phytoplankton and zooplankton in polyhumic water were investigated in laboratory throughflow systems. Growing Warnstorfia (together with epiphytic algae and bacteria) suppressed the production of planktonic algae but had no clear effect on leucine uptake, and hence bacterial production, or on the decomposition of humic substances. Phenol uptake and mineralization rates, however, were lower in the littoral water than in the pelagial water. Excretion of organic carbon by Warnstorfia algae or Daphnia longispina (the predominant crustacean in the pelagial water) provided only a minor contribution to bacterial production; therefore, a major contribution had to be from humic substances. A bacterial production efficiency of 31–38% could account for the microbial respiration in the water. The results indicated that bacterial, or detrital matter (originating largely from the littoral zone), could not obviate the need for algal food, and that a great deal of particulate matter in the water was poor or useless food for Daphnia. In all, the bulk of dissolved organic matter in Lake Mekkojärvi was biochemically highly recalcitrant. Our results indicate that humic substances (from watershed or littoral area) which, through bacterial degradation, enter the planktonic food web of the lake are mainly lost through respiration by microorganisms.  相似文献   

4.
SUMMARY. The plankton community within an Equisetum fluviatile stand in oligotrophic Lake Pääjärvi had distinct diurnal fluctuations in the total cell volume and species composition of algae and in the abundance of microcrustaceans ( Bosmina coregoni ). Diurnal fluctuations in pH, oxygen saturation and temperature of the water were also recorded. Within the littoral region, daytime pH values > 9 were recorded, whereas in the pelagial region of the lake, values remained near pH 7. Diatoms and green algae dominated the littoral phytoplankton especially in the innermost parts of the macrophyte stand, with cryptophytes (dominant in the pelagial area) occurring only in small numbers. At the outer parts of the macrophyte stand, water movements between the pelagial and littoral areas might rapidly increase the contribution of cryptophytes in the phytoplankton. The fall in algal cell volume during the night may have resulted from settling out of cells in the absence of wind-induced water movements, perhaps together with increased grazing pressure from dense swarms of Bosmina (up to 3000 individuals per litre) which appeared during the night.  相似文献   

5.
J. Murase  M. Sakamoto 《Limnology》2000,1(3):177-184
The horizontal distribution of the abundance and isotopic composition of carbon and nitrogen was studied on surface sediment samples (0–15 cm) collected from the entire area of Lake Biwa, the largest freshwater lake in Japan. As water depth increased, a marked increase in organic matter content was observed at the sampling sites, especially in the western North Basin, characterized by a steep slope. In the northwestern North Basin, which has no major inflowing streams, the sediments contained large amounts of organic matter, suggesting the possibility of lateral transportation of sedimented matter from other places by lake currents. The total amounts of carbon and nitrogen in the top-2 cm of sediment of the entire area of Lake Biwa were estimated to be 9.2 × 104 tC and 1.0 × 104 tN. The δ15N values in the littoral sediment were low and close to those in the inflowing river sediment, suggesting selective sedimentation of allochthonous organic matter onto the littoral area. In the North Basin, vertical profiles of organic matter content and δ13C values of the sediments in the littoral area showed a smaller downward decrease than in the profundal area, whereas δ15N values decreased with sediment depth in both areas. It was suggested that the littoral sediments contained abundant amounts of allochthonous and relatively refractory organic matter. Further, it was suggested that the autochthonous organic matter originated from primary production deposited mainly on the profundal zone and was easily decomposed in early diagenesis after sedimentation. Received: July 30, 1999 / Accepted: December 10, 1999  相似文献   

6.
Temporal changes in α-and β-glucosidase activities, dissolved organic matter content, and bacterial biomass were studied in the superficial sediment layer of a eutrophic lake during the period of anoxia. The mean α-and β-glucosidase activities were 30.7±11.0 and 15.1±6.2 nmol h−1 g−1 of dry sediment, respectively. The specifc β-glucosidase activity seemed to be stimulated by carbohydrates (r=0.80, P<0.05), whereas the specifc α-glucosidase activity was negatively correlated with the dissolved protein concentration (r=−0.72, P<0.10). To test the effect of organic matter on hydrolytic activities under controlled conditions, changes in specific activities were studied in relation to the concentrations of different types of organic matter: phytoplankton, polymers (proteins, cellobiose, and starch) and monomers (glucose and amino acids). The specifc α-and β-glucosidase activities were strongly induced by their natural substrates (starch and cellobiose, respectively) (P<0.05) and were not inhibited by glucose. Proteins inhibited these activities (P<0.05), whereas supplementation with amino acids had no effect on specifc glycolytic activities.  相似文献   

7.
J. Grey  R. I. Jones  D. Sleep 《Oecologia》2000,123(2):232-240
Carbon stable isotope analysis was carried out on zooplankton from 24 United Kingdom lakes to examine the hypothesis that zooplankton dependence on allochthonous sources of organic carbon declines with increasing lake trophy. Stable isotope analysis was also carried out on particulate and dissolved organic matter (POM and DOM) and, in 11 of the lakes, of phytoplankton isolates. In 21 of the 24 lakes, the zooplankton were depleted in 13C relative to bulk POM, consistent with previous reports. δ13C for POM showed relatively little variation between lakes compared to high variation in values for DOM and phytoplankton. δ13C values for phytoplankton and POM converged with increasing lake trophy, consistent with the expected greater contribution of autochthonous production to the total organic matter pool in eutrophic lakes. The difference between δ13C for zooplankton and that for POM was also greatest in oligotrophic lakes and reduced in mesotrophic lakes, in accordance with the hypothesis that increasing lake trophic state leads to greater dependence of zooplankton on phytoplankton production. However, the difference increased again in hypertrophic lakes, where higher δ13C values for POM may have been due to greater inputs of 13C-enriched organic matter from the littoral zone. The very wide variation in phytoplankton δ13C between lakes of all trophic categories made it difficult to detect robust patterns in the variation in δ13C for zooplankton. Received: 2 November 1998 / Accepted: 3 December 1999  相似文献   

8.
Water temperature, organic matter quality and quantity and macrofauna activity generally regulate the seasonal evolution of benthic oxygen uptake in coastal areas. We hypothesize that highly productive lagoons can represent an exception in this respect, due to alternating sequences of phytoplankton bloom, dystrophy and collapse events, coupled with water anoxia and azoic sediments. In order to verify this assumption, total oxygen uptake (TOU) and diffusive oxygen uptake (DOU) were determined during the ice-free period of 2009 in the sediments of a hypertrophic basin (the Curonian Lagoon, Baltic Sea). Seasonal measurements were carried out via sediment incubation and microprofiling in littoral and pelagic areas. TOU increased from spring to summer, but it remained elevated also in autumn likely due to accumulation of labile organic matter after algal blooms. TOU and DOU closely agreed in pelagic areas, while at littoral sites TOU exceeded DOU, suggesting temporal or local importance of bioturbating organisms. Water chlorophyll a and oxygen saturation were likely the most important driving factors for benthic respiration. Very limited oxygen penetration (<1?mm) over a 6-month period possibly enhances nitrogen removal via denitrification and reactive phosphorus efflux.  相似文献   

9.
Physics-based remote sensing in littoral environments for ecological monitoring and assessment is a challenging task that depends on adequate atmospheric conditions during data acquisition, sensor capabilities and correction of signal disturbances associated with water surface and water column. Airborne hyper-spectral scanners offer higher potential than satellite sensors for wetland monitoring and assessment. However, application in remote areas is often limited by national restrictions, time and high costs compared to satellite data. In this study, we tested the potential of the commercial, high-resolution multi-spectral satellite QuickBird for monitoring littoral zones of Lake Sevan (Armenia). We present a classification procedure that uses a physics-based image processing system (MIP) and GIS tools for calculating spatial metrics. We focused on classification of littoral sediment coverage over three consecutive years (2006–2008) to document changes in vegetation structure associated with a rise in water levels. We describe a spectral unmixing algorithm for basic classification and a supervised algorithm for mapping vegetation types. Atmospheric aerosol retrieval, lake-specific parameterisation and validation of classifications were supported by underwater spectral measurements in the respective seasons. Results revealed accurate classification of submersed aquatic vegetation and sediment structures in the littoral zone, documenting spatial vegetation dynamics induced by water level fluctuations and inter-annual variations in phytoplankton blooms. The data prove the cost-effective applicability of satellite remote-sensing approaches for high-resolution mapping in space and time of lake littoral zones playing a major role in lake ecosystem functioning. Such approaches could be used for monitoring wetlands anywhere in the world.  相似文献   

10.
We investigated spatial changes in the isotope ratios of the plankton food web in Lake Chany, Siberia, Russia, especially at an estuarine transition zone of the lake. The δ13C values of particulate organic matter (POM) varied among the sampling sites, and increased with increasing pH of the lake water. This may reflect a shift by phytoplankton from using CO2 to using bicarbonate for photosynthesis with increasing pH. The δ13C values of zooplankton community also changed at each site along with those of the POM. This was indicative of carbon isotope changes of plankton food webs between the stations along an environmental gradient.  相似文献   

11.
In situ carbon-14 bioassay techniques were used during 1972–1974 to estimate nutritional preferences and requirements of the pelagial phytoplankton in Lake Ohrid, Yugoslavia.Bioassay measurements, conducted spatially and temporally, and corrected appropriately, showed a strong stimulation to phytoplankton photosynthesis rates during most seasons in epilimnetic waters following microadditions of inorganic silica and iron. Photosynthetic stimulation was additive for individual elements and synergistic when simultaneous additions were made. Marked stimulation occurred for both elements during the spring, especially in upper hypolimnetic waters (50–75 m) and correlated strongly with dominant diatom populations.The addition of an organic chelator, nitrilotriaceticacid (NTA), commonly stimulated photosynthetic rates and, frequently, as deep as 15o m, considerably below the depth of optimal light availability for photosynthesis. With minor exception, the simultaneous addition of this chelator and inorganic iron were always capable of producing stimulatory responses.Inorganic phosphorus was preferred over nitrogen and generally found to be more stimulatory. Phosphorus stimulation was restricted primarily to periods of spring and summer production. The addition of glucose, acetate and glycine produced positive responses, while the addition of several vitamins showed little effect except for a stimulation from microamounts of B12. The addition of two organic growth substances, Gibberellic acid (GA) and Indoleacetic acid (IAA), both stimulated phytoplankton photosynthesis.The results of more than 140 bioassay measurements indicate the pelagial phytoplankton are severely restricted nutritionally due to specific physical-chemical interactions occurring in Lake Ohrid. Similar mechanisms have been postulated and evaluated in other hand-water lake systems. In spite of the great depth of the lake (300 m+) and probable age, these mechanisms are undoubtedly responsible for the low phytoplankton production occuring in the lake.  相似文献   

12.
The role of meiobenthos in lake ecosystems   总被引:1,自引:0,他引:1  
It is shown that meiobenthos plays an important role in the secondary production by zoobenthos in lakes, as well as in the degradation of organic matter. In large lakes (Lake Ladoga, Lake Onega, Lake Päijänne, Lake Constance), the ratio of meiobenthic production to the production of macrobenthos is on average 50–61%. In the small Latgalian lakes (Latvia), this proportion is different: in the profundal of these lakes it varies from 92.5% in a naturally clean mesotrophic lake to 0.0004% in the most eutrophic lake, and in the littoral of lakes – from 578–1476% in mesotrophic lakes to 148–306% in eutrophic ones. The level of production of littoral meiobenthos does not depend on the trophic status of the lake, and can be equally high both in undisturbed mesotrophic lakes and in strongly eutrophicated lakes. The intensity of production of the littoral meiobenthos in oligotrophic and mesotrophic lakes, on the one hand, and in eutrophic lakes on the other, are not reliably distinguished. There is a clear tendency for a decrease of the role of profundal meiobenthos with regard to the transformation of energy flows in lake ecosystems, both with an increase in eutrophication and with an increase in the amount of organic matter in the benthal available from phytoplankton.  相似文献   

13.
ABSTRACT We tested whether pelagic light and nutrient availability, metabolism, organic pools and CO2-supersaturation were related to lake size and surrounding forest cover in late summer–autumn measurements among 64 small (0.02–20 ha), shallow seepage lakes located in nutrient-rich, calcareous moraine soils in North Zealand, Denmark. We found a strong implicit scaling to lake size as light availability increased significantly with lake size while nutrient availability, phytoplankton biomass and dissolved organic matter declined. Forest lakes had significantly stronger net heterotrophic traits than open lakes as higher values were observed for light attenuation above and in the water, dissolved organic matter, pelagic community respiration (R) relative to maximum gross primary production (R/GPP) and CO2-supersaturation. Total-phosphorus was the main predictor of phytoplankton biomass (Chl) despite a much weaker relationship than observed in previous studies of larger lakes. Maximum gross primary production increased with algal biomass and decreased with dissolved organic matter, whereas community respiration increased with dissolved organic matter and particularly with gross primary production. These results suggest that exogenous organic matter supplements primary production as an energy source to heterotrophs in these small lakes, and particularly so in forest lakes experiencing substantial shading from the forest and dissolved humic material. This suggestion is supported by 20–30-fold CO2 supersaturation in the surface water of the smallest forest lakes and more than sixfold supersaturation in 75% of all measurements making these lakes among the most supersaturated temperate lakes examined so far.  相似文献   

14.
In order to determine the effect of various soil components on the activity of proteins, we monitored the fluorescence and the enzymatic activity of, respectively, green fluorescent protein (GFP) and β-glucosidase adsorbed on fine soil particles. We also monitored the activity of these proteins in the presence of components that are representative of soil colloids: a montmorillonite clay, goethite and organic matter extracted from soil. Upon adsorption on clay and goethite, GFP lost its fluorescence properties while β-glucosidase suffered only a partial loss of its catalytic activity. Extractable organic matter had an inactivating role on GFP while it did not cause inactivation of β-glucosidase. When GFP and β-glucosidase adsorbed on particles from natural soil samples, their behaviour was consistent with the behaviour observed for these proteins in the presence of the separate components, suggesting that the macroscopic activity of proteins adsorbed on soil particles corresponds to an average of the activities of proteins adsorbed on a mixture of surfaces. The monitoring of the proteins on soil particles with different organic matter contents has also shown that organic matter can have different effects (protecting or inactivating) on different proteins.  相似文献   

15.
Variations in the attenuation of photosynthetically available radiation were analysed using extensive spatial sampling in two seasons in a subtropical wetland lake. Simultaneously with the attenuation measurements, the principal absorption and scattering components of the water column were also measured. The elevated spatial resolution used in the study allowed the determination of spatially distinct optical water classes within the lake. Changes in dissolved organic matter, phytoplankton and tripton concentrations led to a wide variation in the vertical attenuation coefficients. These changes depended on local characteristics of the ecosystem and time of year. The spatial distribution of the attenuation coefficients was examined in relation to the hydrological and geomorphological characteristics of the littoral area of the lake. The impacts of two small rivers on the light environment and attenuation components are shown. Finally, the resulting model was used to examine the possible impacts of changes in light availability at the lake bottom in relation to recent changes in lake water level.  相似文献   

16.
We tested whether seasonal changes in the sources oforganic substances for microbial metabolism were reflected changes in the activities of five extracellular enzymes in the eighth order lowland River Elbe, Germany. Leucine aminopeptidase showed the highest activities in the water column and the sediments, followed by phosphatase > β-glucosidase > α-glucosidase > exo-1,4-β-glucanase. Individual enzymes exhibited characteristic seasonal dynamics, as indicated by their relative contribution to cumulative enzyme activity. Leucine aminopeptidase was significantly more active in spring and summer. In contrast, the carbohydrate-degrading enzymes peaked in autumn, and β-glucosidase activity peaked once again in winter. Thus, in sediments, the ratio of leucine aminopeptidase/β-glucosidase reached significant higher medians in spring and summer (5-cm depth: ratio 7.7; 20-cm depth: ratio 10.1) than in autumn and winter (5-cm depth: ratio 3.7, 20-cm depth: ratio 6.3). Therelative activity of phosphatase in the sediments was seasonally related to both the biomass of planktonic algae as well as to the high content of total particulate phosphorus in autumn and winter. Due to temporal shifts in organic matter supply and changes in the storage capacity of sediments, the seasonal peaks of enzyme activities in sediments exhibited a time lag of 2–3 months compared to that in the water column, along with a significant extension of peak width. Hence, our data show that the seasonal pattern of extracellular enzyme activities provides a sensitive approach to infer seasonal or temporary availability of organic matter in rivers from autochthonous and allochthonous sources. From the dynamics of individual enzyme activities, a consistent synoptic pattern of heterotrophic functioning in the studied river ecosystem could be derived. Our data support the revised riverine productivity model predicting that the metabolism of organic matter in high-order rivers is mainly fuelled by autochthonous production occurring in these reaches and riparian inputs.  相似文献   

17.
Iron Constraints on Planktonic Primary Production in Oligotrophic Lakes   总被引:3,自引:0,他引:3  
Phototrophic primary production is a fundamental ecosystem process, and it is ultimately constrained by access to limiting nutrients. Whereas most research on nutrient limitation of lacustrine phytoplankton has focused on phosphorus (P) and nitrogen (N) limitation, there is growing evidence that iron (Fe) limitation may be more common than previously acknowledged. Here we show that P was the nutrient that stimulated phytoplankton primary production most strongly in seven out of nine bioassay experiments with natural lake water from oligotrophic clearwater lakes. However, Fe put constraints on phytoplankton production in eight lakes. In one of these lakes, Fe was the nutrient that stimulated primary production most, and concurrent P and Fe limitation was observed in seven lakes. The effect of Fe addition increased with decreasing lake water concentrations of total phosphorus and dissolved organic matter. Possible mechanisms are low import rates and low bioavailability of Fe in the absence of organic chelators. The experimental results were used to predict the relative strength of Fe, N, and P limitation in 659 oligotrophic clearwater lakes (with total phosphorus ≤ 0.2 μM P and total organic carbon < 6 mg C l−1) from a national lake survey. Fe was predicted to have a positive effect in 88% of these lakes, and to be the nutrient with the strongest effect in 30% of the lakes. In conclusion, Fe, along with P and N, is an important factor constraining primary production in oligotrophic clearwater lakes, which is a common lake-type throughout the northern biomes. This paper is dedicated to the memory of Prof. Peter Blomqvist (deceased 2004).  相似文献   

18.
The features of the floristic composition and dynamics of the biomass of phytoplankton in shallow and deep areas of the Volga reach in the Rybinsk Reservoir have been studied during years with different thermal and water-level regimes (2009–2011). The floristic diversity and biomass of phytoplankton increase with a decrease in depth. The increase in water temperature at low water level stimulates phytoplankton vegetation in the pelagial zone and a decrease in biomass in the littoral zone, while a high diversity of algocenoses is recorded irrespective of habitat. The contribution of filamentous algae and cyanoprokaryotes to the biomass increases in the shallow littoral part; in the open part of the reservoir, the biomass of mixotrophic flagellates decreases. Their abundance, as well as the abundance of zignematales, increases with decreasing depth.  相似文献   

19.
  • 1 In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998–1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass.
  • 2 In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8–6.2 mol m?2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above‐ground plant biomass, had a net CO2 loss of 1.1–7.1 mol m?2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment.
  • 3 Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes.
  相似文献   

20.
Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号