首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The ultrastructure of the flame bulbs, protonephridial capillaries and duct of fully developed and regenerating Stenostomum sp. is described. Flame bulbs are formed by a single cell whose nucleus is located basally or laterally to the weir. The weir is formed by a single row of transverse ribs connected by a thin membrane, apparently of extracellular matrix. Internal leptotriches arise from the proximal cytoplasm and extend in a (usually) single row along the weir and into the lumen of the distal cytoplasmic tube. Many or all leptotriches do not fuse with the distal cytoplasm. Two cilia are each anchored in the proximal cytoplasm by a cross-striated vertical and lateral rootlet, the latter bent forward and extending for some distance into one of the two cytoplasmic cords along the weir. Each cord contains the lateral rootlet in its proximal part, as well as many microtubules. The distal cytoplasmic tube contains two (longitudinal) junctions, i.e. lines of contact between cell processes of the same, terminal cell. Occasionally, more than two junctions were seen, apparently due to branches of the terminal cell in contact with each other. Flame bulbs join capillaries lined by several canal cells type I, containing few or no microvilli but lateral flames. Such capillaries join a duct (or ducts?) lined by canal cells type II with many long microvilli. The large protonephridial duct is lined by numerous cells with lateral flames and many long microvilli. In regenerating tissue (10.5 hours after cutting) some flame bulbs were free, i.e. not connected to capillaries, and some capillaries openly communicated with the surrounding intercellular space. In the presence of a single row of ribs in the weir, of internal leptotriches, and of vertical and lateral ciliary rootlets, the flame bulb of Stenostomum sp. resembles that of other Plathelminthes much more closely than hitherto thought. The species differs from non-catenulid plathelminths mainly in the large number of glandular cells lining the large protonephridial ducts, in the transverse orientation of the ribs in the weir and in the presence of only two cilia in the flame.  相似文献   

2.
The flame bulb of Prorhynchus is formed by a single cell. Its nucleus is not located in the cytoplasm at the base of the flame. Cilia of the flame have cross-striated hollow ciliary rootlets converging towards their tips. The maximum number of cilia counted was 13. The weir consists of a single row of longitudinal ribs that contain longitudinal filaments and possess regularly arranged protrusions along their surface appearing as transverse bands in horizontal section. A 'membrane' of extracellular material extends between the ribs. and loose material fills the places between the ribs, with a denser layer midway between adjacent ribs. Distally, the ribs fuse to form a continuous tube without a junction. Small protonephridial capillaries lack junctions, larger ducts have lateral flames and patches of long microvilli. Large excretory ducts open into a ciliated and lamellated cavity which is connected by a narrow canal to the excretory pore. The terminal part of the canal close to the pore possesses many cilia and microvilli. Phylogenetic implications of the findings are discussed.  相似文献   

3.
The ultrastructure of the flame bulbs and capillaries of the protonephridia of Dactylogyrus (probably anchoratus) from Carassius auratus in southeastern Australia, and of an unidentified ancyrocephaline from the marine teleost Priacanthus macracanthus in southern Queensland is described. The cilia of the flame are anchored in the terminal cell by means of basal bodies without distinct rootlets. The nucleus of the terminal cell is basal, and (in Dactylogyrus) partly lateral to the basal bodies. The weir consists of a row of internal and a row of external ribs (rods) connected by a ‘membrane’. The external ribs are continuations of the cytoplasm of a thick-walled ‘cytoplasmic cylinder’ (proximal canal cell) which tightly surrounds most of the flame and contains a septate junction; the internal ribs are continuous with the terminal cell. Internal leptotriches arise from the perikaryon of the terminal cell, and, in the ancyrocephaline, also from the internal ribs. The wall of the protonephridial capillaries contains a septate junction, a reticulum of interconnected spaces and, in the ancyrocephaline, also lamellae. Lateral flames are common in the capillaries of Dactylogyrus.  相似文献   

4.
本研究应用透射电子显微镜研究了扩张莫尼茨绦虫原肾管的细胞学特征 ,莫尼茨绦虫原肾管的焰茎球为一个过滤器结构 ,类似于“挡河坝”样构造 ,此构造由端细胞和近管细胞外突形成的肋条 (或称杆 )相互交错排列而成。肋条之间由细胞外物质构成的“膜”结构连接 ,过滤作用通过该“膜”发生。焰细胞与近管细胞交界处有裂缝或孔与细胞外的结缔组织 (实质组织 )相通 ;原肾管的毛细排泄管细胞质索之间没有隔状联结 ;毛细排泄管及排泄管的管腔内有大量珠状微绒毛突起以增加表面积。从扩张莫尼茨绦虫及其它一些无脊椎动物原肾管的研究结果表明 ,原原肾管概念将焰细胞作为封闭的盲端已不再合适 ,需要进行修订 ,建议修订为 :原肾管是一种焰细胞系统 ,通常由焰细胞、管细胞和肾孔细胞组成 ,焰茎球作为过滤装置与周围的结缔组织 (实质组织 )有或没有裂缝 (孔 )相通  相似文献   

5.
The ultrastructure of the flame cells, capillaries, collecting tubes, excretory bladder, excretory atrium, caudal vesicle, lateral caudal ducts and excretory pores of cercariae of Bucephaloides gracilescens (Rudolphi, 1819) Hopkins, 1954 and Prosorhynchus squamatus Odhner, 1905 (Digenea: Bucephalidae) is described. Both species are essentially similar except for some details. The terminal parts of the protonephridia have all the structural features that are typical of trematodes. The collecting tubes in the cercarial body are composed of cells that are wrapped around the lumen. The main collecting tubes are joined to the excretory bladder syncytium by septate junctions. Features of P. squamatus excretory bladder epithelium indicate that it is involved in secretory activity, but this is not the case in B. gracilescens. In both species the luminal surface of the excretory bladder epithelium is increased by lamellae, and the basal plasma membrane forms invaginations. In the bladder syncytium of P. squamatus both apical lamellae and basal invaginations are more developed and mitochondria are also more numerous. The excretory atrium is lined by a syncytium with nucleated cytons located in the surrounding parenchyma. The atrium lining is not continuous with the body tegument and possesses specific secretory inclusions and a thick glycocalyx. Septate junctions connect the atrium syncytium to the excretory bladder epithelium at its anterior end and to the syncytial excretory epithelium lining the caudal vesicle and the lateral caudal ducts at its posterior. In the excretory pores the caudal duct syncytium is joined to the tegument by septate desmosomes.  相似文献   

6.
Rohde K. 1973. Ultrastructure of the protonephridial system of Polystomoides malayi Rohde and P. renschi Rohde (Monogenea : Polystomatidae). International Journal for Parasitology3: 329–333. Polystomoides malayi and P. renschi have three types of protonephridial flames. The first type is a typical flame cell with internal and external ribs connected by a weir membrane without nephrostomes, and with internal and external leptotriches. The second type is a flame cell complex consisting of at least two flames reaching into a common cavity. The third type is a non-terminal (= lateral) flame in the protonephridial ducts, consisting of loosely arranged cilia many of which have lateral tube-like extensions and whose tips have irregularly arranged filaments gradually decreasing in number. The number of cilia in all types of flames varies. The smallest capillaries are strongly convoluted and have a smooth or slightly reticulated surface, the larger ducts have strongly reticulated walls and single cilia may be found in the cavities of the reticulum.  相似文献   

7.
Transmission electron microscopical observations were made on the protonephridial terminal organ and associated ducts of three adult trematodes, the aspidogastrean Aspidogaster limacoides Diesing, 1835 and the digeneans Azygia lucii (Müller, 1776) and Phyllodistomum angulatum Linstow, 1907, and the monogenean Ancyrocephalus paradoxus Creplin, 1839. Previously unreported ultrastructural details of the terminal organ of adult trematodes include multiple contact sites (septate junctions and zonulae adherentes) between the membranes of the terminal and adjacent canal cells. Septate junctions traverse the epithelial cytoplasm of the canal wall, and the same type of septate junctions are observed within the cytoplasmic cord at the level of the tip of the flame tuft in both longitudinal and oblique sections of all three trematode species studied. In the monopisthocotylean Ancyrocephalus paradoxus, the absence of any junctions in the cytoplasmic cord and the presence of septate junction within all of the protonephridial ducts are reported. On the basis of the small number of monogenean species in which these features have been studied, in relation to the size of the group, there seems to be a high diversity in some characters of the protonephridial terminal organ. The study confirms that the Aspidogastrea and Digenea possess the same morphology of their protonephridial terminal organ and, although this differs slightly from that of most members of the Monogenea so far studied, it supports previous views on the close relationship of these groups.  相似文献   

8.
The protonephridial terminal complex of Artioposthia is formed by one or two terminal cells, each with a nucleus located in the lateral wall of the flame bulb, and probably two proximal canal cells forming the wall of the protonephridial capillary. The weir is restricted to the proximal parts of the flame bulbs and consists of convoluted slits separated by thick cytoplasmic columns. Cross-striated ciliary rootlets running parallel with and obliquely or transversely to the longitudinal axis of the flame bulbs strengthen the walls of the flame bulbs and, to a lesser degree, that of the capillary. Numerous cristate mitochondria are present in the terminal and proximal canal cells. Cytoplasmic processes extend from the terminal cells into the adjacent tissue, and narrow internal leptotriches extend from the cytoplasm of the terminal cells into the lumen of the flame bulbs. The wall of the capillary contains many interconnected, liquid filled spaces that communicate with the lumen of the capillary, and two septate junctions. Phylogenetic implications of the findings are discussed.  相似文献   

9.
K. Rohde  N. Watson 《Acta zoologica》1991,72(3):137-142
The terminal part of the protonephridia of Microstomum is formed by a branching proximal canal cell and (at least?) two terminal cells. Each weir consists of longitudinal (sometimes convoluted) ribs continuous with the cytoplasm of the terminal cell. Internal leptotriches arise from the terminal and proximal canal cells. Near the tip of the flame, the proximal canal cell tube is surrounded by the more external terminal cell and connected to it by a septate junction. Large cristate mitochondria are densely packed in the terminal and canal cells. The flame bulb of Microstomum differs markedly from that of other macrostomids (Macrostomum, Paramalostomum) examined. Phylogenetic implications are discussed.  相似文献   

10.
K. Rohde 《Zoomorphology》1987,106(6):346-351
Summary The ultrastructure of the flame cells and protonephridial capillaries of the Rhabdocoela Craspedella sp. and Didymorchis sp., ectocommensals on the freshwater crayfish Cherax destructor in eastern Australia is described. The flame cells of both species have variable numbers of cilia without distinct rootlets and with decreasing numbers of axonemal tubules towards the ciliary tips. Bundles of microtubules extend from the cytoplasm adjacent to the ciliary rootlets through the ribs of the weir apparatus into the distal cytoplasmic tube, where the numbers of microtubules gradually decrease. The weir apparatus is formed by a single row of longitudinal ribs connected by a membrane. In Craspedella, but not in Didymorchis, the ribs have external branched leptotriches. Mitochondria are common in the wall of the flame cell of both species. The protonephridial capillary just above the end of the ciliary tuft narrows in both species and bends sharply in Craspedella. The lumen of the flame cell and the capillary is lined by a dark layer of cytoplasm; there is no enlargement of the surface area by microvilli or lamellae. Centrioles were seen in the capillary wall of Craspedella, and in Didymorchis the cytoplasm around the capillaries has a very loose and light appearance. The ultrastructure of the flame cells and capillaries of both species corresponds closely to that of Temnocephala sp.Abbreviations in the figures BB basal body - CE centriole - L leptotrich - M microtubules - ME membrane of weir apparatus - MI mitochondrion - PC protonephridial capillary - R rib (rod) of weir apparatus  相似文献   

11.
Our present understanding of the excretory system of Acanthocephala is largely the result of work done by 5 German scholars: Kaiser, Schepotieff, Meyer, Kilian, and von Haffner. Present studies indicate that a protonephridial system is restricted to the family Oligacanthorhynchidae. However, many members of this family have not had a protonephridial system described. Three nephridial designs have been described: 1) dendritic type, organized as branches of a tree where each final branch terminates in a ciliated bulb; 2) capsular type, in which all ciliated bulbs empty directly into a common chamber; and 3) rudimentary type, consisting of a single cell with a patent ciliary pouch but no ducts to the outside. The first 2 types are a syncytia with 3 nuclei located in the capsule or stem wall and none in the flame bulbs. These excretory systems consist of 2 clusters of flame bulbs that empty separately into an expandable excretory bladder which in turn empties into ducts of the reproductive system. This urogenital system empties to the outside through a gonopore located at the tip of the penis in males and the posterior terminus of the vagina in females. Cilia occur in certain excretory tubes, depending on sex and species, but are unknown in the excretory bladder or ducts leading into it. The rudimentary type consists of a cell whose posterior extension terminates near the bursal lumen, but it is not known if this is significant for the discharge of material. There is no information on the physiology or biochemistry of the excretory system or its products.  相似文献   

12.
The ultrastructure of flame bulbs and epithelium of excretory canals in Bothrioplana semperi (Turbellaria, Seriata) have been studied. The flame bulbs consist of two cells, the terminal cell and the proximal canal cell. The weir is formed by two rows of longitudinal ribs. The ribs of the internal row originate from the flame cell, external ribs are formed by the proximal canal cell. Each external rib has a remarkable bundle of microfilaments, originating in the cytoplasm of the first canal cell distally to the bases of external ribs. Membrane of internal ribs is marked by small electrondense granules, separate or fused to an electron-dense layer, continuous to dense “membrane,” connecting both external and internal ribs. Sparse internal leptotrichs originate from the bottom of the flame bulb cavity. External leptotrichs are lacking. Septate junction is present only in proximal canal cell at the level of tips of cilia. The apical surface of the canal cell bears rare short microvilli. The basal membrane of canal cells forms long invaginations that may reach nearly the apical membrane. The epithelium of excretory canals lacks the cilia. The ultrastructure of flame bulbs and epithelium of the excretory canals in B. semperi shares representatives of suborder Proseriata (Seriata). The contradiction exists in interpretation of the structure of flame bulbs in Proseriata. Ehlers and Sopott-Ehlers assumed that the external ribs are derivatives of the proximal canal cell and internal ones are outgrowths of the terminal cell, while Rohde has found conversely: the external ribs are outgrowths of the terminal cell, the internal ones are outgrowths of the proximal canal cell. However, the illustrations provided by Rohde do not enable to ascertain what cells the internal and external ribs derive from, while illustrations provided by Ehlers justify his interpretation. The order of weir formation in B. semperi confirms the viewpoint of Ehlers. The implication of ultrastructure of flame bulbs in Proseriata, especially of the order of flame bulb formation, in the Platyhelminthes phylogeny has been discussed.  相似文献   

13.
The protonephridial system of Götte's larva of Stylochus mediterraneus was studied by electron microscopy. There is one protonephridium on each side of the body, formed by one terminal and one canal cell. The terminal filtration apparatus is formed by a single cell (the terminal cell) with several globular processes, the largest of which includes the nucleus. Fingers of cytoplasm (leptotriches) from each process penetrate the lumen surrounding the bundle of cilia and fingers from adjacent processes interdigitate to form a pattern of convoluted slits which constitute the weir. The single canal cell is inserted internally to the terminal cell at the top of the weir and encloses the lumen without a junction. Septate junctions are present between the terminal and canal cells. The lumen of the canal cell is smooth-walled for most of its length and cilia arise and terminate at all levels of the terminal and canal cells. Posterior to the larval mouth opening, the canal cell crosses the epithelium and the lumen ramifies to form the excretory opening. The terminal apparatus closely resembles that found in the freshwater planarian Bdellocephala brunnea .  相似文献   

14.
The ultrastructure of the flame bulbs of the turbellarian Urastoma cyprinae from Mytilus galloprovincialis in the Mediterranean is described. The nucleus of the terminal cell is located some distance basal to the rootlets of the cilia forming the flame; the cytoplasm contains numerous tubules approximately 54–66 nm in diameter, and vesicles. Thick walled, densely packed rod-like structures coil around each other with a tendency towards longitudinal orientation close to the flame. The rod-like structures tightly surround the basal part of the flame and the distal cytoplasmic tube in the apical part of the flame. Some of them, including the inner predominantly longitudinally directed ones, are continuous with the cytoplasm of the terminal cell, others are continuous with the cytoplasm of the distal cytoplasmic tube. Internal leptotriches arise from the cytoplasm of the terminal cell and intrude between the basal parts of the cilia of the flame. The distal cytoplasmic tube possesses a septate junction. The flame bulb of Urastoma differs distinctly from those known from other Platyhelminthes; implications for the phylogeny of Platyhelminthes are discussed.  相似文献   

15.
A single pair of protonephridia is the typical larval excretory organ of molluscs. Their presence in postlarval developmental stages was discovered only recently. We found that the protonephridia of the polyplacophoran mollusc, Lepidochitona corrugata, achieve their most elaborate differentiation and become largest during the postlarval period. This study describes the protonephridia of L. corrugata using light and electron microscopy and interactive three‐dimensional visualization. We focus on the postlarval developmental period, in which the protonephridia consist of three parts: the terminal part with the ultrafiltration sites at the distal end, the voluminous protonephridial kidney, and the efferent nephroduct leading to the nephropore. The ultrafiltration sites show filtration slits between regularly arranged thin pedicles. The ciliary flame originates from both the terminal cell and the duct cells of the terminal portion. The efferent duct also shows ciliation. The most conspicuous structures, the protonephridial kidneys, are voluminous swellings composed of reabsorptive cells (“nephrocytes”). These cells exhibit strong vacuolization and an infolding system increasing the basal surface. The protonephridial kidneys, previously not reported at such a level of organization in molluscs, strikingly resemble (metanephridial) kidneys of adult molluscan excretory systems. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
In early developmental stages of Erpobdella octoculata two pairs of transitory nephridia occur which degenerate during the formation of the body segments. Because in the ground pattern of Annelida the first nephridia formed during ontogenesis are protonephridia, it can be assumed that the transitory nephridia of E. octoculata are homologous to the larval protonephridia (head kidneys) of Polychaeta. To test this hypothesis two cryptolarvae of E. octoculata were investigated ultrastructurally. Both pairs of transitory nephridia are serially arranged to either side of the midgut vestigium. Each organ consists of a coiled duct that opens separately to the exterior by an intraepidermal nephridiopore cell. The duct is percellular and formed by seventeen cells. Adluminal adherens and septate junctions connect all duct cells; the most proximal duct cell completely encloses the terminal end of the duct lumen. A filtration structure characteristic for protonephridia is lacking. Additionally, the entire organ lacks an inner ciliation. Morphologically and ultrastructurally the transitory nephridia of E. octoculata show far reaching congruencies with the segmental metanephridia in different species of the Hirudinea. These congruencies support the assumption that formation of transitory nephridia and definitive metanephridia in Hirudinea depends on the same genetic information. The same inherited information is assumed to cause the development of larval head kidneys and subsequently formed nephridia in different species of the Polychaeta. Thus, the presumed identical fate of a segmentally repeated nephridial anlage supports the hypothesis of a homology between the transitory nephridia in Hirudinea species and the protonephridial head kidneys in the ground pattern of the Polychaeta. We, therefore, assume that functional constraints lead to a modification of the protonephridial head kidneys in Hirudinea and explain ultrastructural differences between the transitory nephridia in Hirudinea and the protonephridia in Polychaeta. Accepted: 11 December 2000  相似文献   

17.
Wilko Ahlrichs 《Zoomorphology》1993,113(4):245-251
Summary Each of the two protonephridial systems of Seison annulatus consists of three sections which are separated by cell borders with septate junctions: (a) a terminal syncytium with eight terminal organs and a capillary canal, (b) a canal syncytium which is divided into a multiciliary canal region and a main canal region, and (c) a nephroporus cell. The terminal syncytium is branched and linked twice to the canal syncytium. The supporting structure of each filtration barrier is a hollow cylinder which is perforated by pores and lacks microvilli (pillars). A protonephridial spine is situated in the multiciliary canal region and stabilizes the neck region. The ored, hollow cylinder and the protonephridial spine are new characteristics for the Rotifera.  相似文献   

18.
The protonephridial system consists of terminal cell, protonephridial capillary, protonephridial tubule and efferent duct. The terminal cell is an elongated, thin-walled, fenestrated basket containing a ciliary flame circumscribed by a palisade of straight microvilli. The filtration area is confined to the terminal cell and consists of slits bridged by a filtration membrane. The cilia, as well as the microvilli, projects into the proximal bell-shaped part of the thin-walled protonephridial capillary. The terminal cells are often found in pairs connected to the same capillary, which has a very narrow lumen. The proximal part of the thick-walled, convoluted protonephridial tubule is ciliated and shows characteristic foldings of the luminal plasma membrane and numerous small vesicles in the cytoplasm. The cells of the following, non-ciliated part of the tubule have interdigitating lateral surfaces and the bases deeply invaginated to form compartments with numerous mitochondria; in the cytoplasm are many large vesicles, possibly containing lipid droplets, and small amounts of glycogen. The distal protonephridial tubule resembles various epithelia with an osmoregulatory function, including the vertebrate nephron.  相似文献   

19.
Summary The ultrastructure of the protonephridial system of the lycophore larva of Gyrocotyle urna Grube and Wagener, 1852, is described. It consists of six terminal cells, at least two proximal canal cells, two distal canal cells and two nephridiopore cells. The terminal cells and the proximal canal cell build up the filtration weir with its two circles of weir rods. The proximal canal cell constitutes a solid, hollow cylinder without a cell gap and desmosome. The distal canal cell is characterized by a strong reduction of the canal lumen by irregularly shaped microvilli. The nephridiopore region is formed by a nephridiopore cell; its cell body is located at some distance proximally within the larva. The connection among different canal cells is brought about by septate desmosomes. Morphological, evolutionary and functional aspects of the protonephridial system within Platyhelminthes are discussed. The structure of the proximal canal cells without a desmosome is considered an autapomorphy of Cestoda.Abbreviations ci cilia of the terminal cell - Co distal canal cell - col lumen of the distal canal cell - Ep epidermis - er outer rods of the filtration weir - il inner leptotriches - ir inner rods of the filtration weir - ld lipid droplets - mt microtubule - mv microvilli - Nc nephridiopore cell - Ne neodermis anlage cells - nu nucleus - pC proximal canal cell - ro ciliary rootlets - sd septate desmosome - Tc terminal cell  相似文献   

20.
and 1992. Ultrastructure and histochemistry of the protonephridial system of juvenile Paramphistomum epiclitum and Fischoederius elongatus (Paramphistomidae: Digenea) during migration in Indian ruminants. International Journal for Parasitology 22: 1103–1115. The protonephridial system of juvenile Paramphistomum epiclitum and Fischoederius elongatus consists of a bilaterally symmetrical arrangement of primary, secondary and tertiary ducts which connect individual flame cells with a simple common bladder. Primary and secondary ducts are formed from columns of adjoining cells which provide an epithelial lining, whose luminal surface is elaborated with either short tubercles or lamellae. Groups of cilia project from the luminal surface at frequent intervals along secondary ducts. By contrast, the tertiary ducts and bladder are lined with a nucleated syncytium which ends at a junctional complex formed with the terminal canal. The latter is continuous with the tegumental syncytium and opens at a nephridiopore on the postero-dorsal surface. Tertiary ducts of mature cercariae contain concretions which are voided by migrating juveniles in whose tertiary ducts lipids are progressively accumulated. Evidence for the role of protonephridia in excretion and possibly in osmoregulation and ionic balance is currently examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号