首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dehydroepiandrosterone (DHEA) is an adrenal androgen whose function is poorly understood. Although DHEA and DHEA sulfate (DHEAS) are secreted in relatively high quantities by the human adrenal, the laboratory rat secretes very little, thus hindering experimental studies of the hormone. In this paper, we measured the changes in serum DHEA and DHEAS under various physiological conditions in golden hamsters. Evening serum DHEAS fell from 6.30 +/- 0.78 microg/dl (mean +/- SE) before surgery to 3.03 +/- 0.23 microg/dl 12 days after bilateral adrenalectomy. Hamsters had higher levels of DHEA and DHEAS in the evening than in the morning, but removal of the gonads did not consistently decrease serum DHEA or DHEAS in males or females. Evening levels of DHEA and DHEAS reached a peak around 7 weeks of age and then gradually decreased to about one-third of these levels by one year of age. These results suggest that DHEA and DHEAS are secreted at least in part from the hamster adrenal, that they do not originate from the gonads, and that there is a daily rhythm with peak levels at a time of day just preceding the active phase. In addition, the levels of these hormones decrease with aging.  相似文献   

2.
The metabolism of orally administered dehydroepiandrosterone (DHEA) by male and female golden Syrian hamsters was examined by quantification of DHEA and dehydroepiandrosterone sulfate (DHEAS) in gallbladder bile, urine and feces using high-performance liquid chromatography (HPLC). Plasma levels of DHEA and DHEAS were also determined by radioimmunoassay (RIA). After 5 days of oral DHEA administration (100 mg/kg body weight twice a day), RIA showed that plasma levels of DHEA and DHEAS were increased approximately 3-6 and 4-5 times, respectively, compared to controls. More than 95 % of circulating DHEA (S) in the peripheral blood was DHEAS. There was no significant sex difference in DHEAS plasma levels between male and female animals in the DHEA-supplemented group. However, 0.2 - 0.3 % of ingested DHEA was conjugated to DHEAS and excreted in urine by females, whereas less than 0.002 % was excreted in urine by males (p < 0.005). DHEAS was excreted in bile by males after DHEA supplementation, and the sex differences in DHEAS levels observed in bile were statistically significant (male, 18.7 +/- 7.5 vs. female, 5.6 +/- 3.1 micromol/l) (p < 0.005). Small amounts of ingested DHEA were excreted in an unchanged state in feces, and no sex difference was observed. These results suggest that there is a considerable sex difference in the conjugation and excretion of orally administered DHEA in the hamster.  相似文献   

3.
The effect of ACTH and prolactin on the synthesis of dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) was studied in cell suspensions of "normal" and tumorous (adenoma) human adrenal cortex. A stimulation of DHEA and no response of DHEAS production by ACTH in "normal" adrenocortical cell suspension was observed. However ACTH stimulated both DHEA and DHEAS synthesis in tumorous adrenocortical cells. Prolactin did not influence either the basal or the ACTH stimulated DHEA and DHEAS production of adrenocortical cells irrespective of their origin. Our results are compatible with the concept that the biosynthesis of DHEA is under ACTH control, while other factor(s) regulate(s) the sulfate pathway of DHEA secretion under normal conditions. In tumorous adrenocortical cells DHEA may be regulated--at least partly--by ACTH. Prolactin seems to have no direct effect on DHEA and DHEAS synthesis. It is postulated that the relationship between serum prolactin and DHEAS (or DHEA) levels observed by several authors might be an extraadrenal effect of prolactin on adrenal androgens.  相似文献   

4.
Radioimmunoassay (RIA) is the most prevalent method for measuring small amounts of hormones, peptides, and other compounds in human body fluids. The method, however, has several problems, such as cross reactions or non-specific reactions of the antibody used. In order to establish an improved method for assaying dehydroepiandrosterone sulfate (DHEAS) and cholesterol, which are the largest components of human breast cyst and duct fluids, we describe a simple, accurate, and sensitive method using high-performance liquid chromatography (HPLC). The samples were treated with cholesterol oxidase for quantitation of dehydroepiandrosterone (DHEA) and free cholesterol, and the respective oxidized substances, 4-androstene-3,17-dione and 4-cholesten-3-one, were extracted with n-hexane. The extracts were analyzed by straight phase HPLC. Effluents were monitored by measuring absorption at 240 nm, where a newly introduced chromophoric group, an alpha,beta-unsaturated ketone, showed intense absorption (epsilon = 16,000). When the total amount of DHEA (DHEAS plus DHEA) was measured, the sample had been solvolyzed by sulfatase beforehand. The amounts of DHEAS were quantified by comparing the amounts of DHEA before and after solvolysis. Levels of free cholesterol, DHEAS, and DHEA in human breast cyst fluids (n = 30) were 1.77 +/- 1.12 mmol/dl, 8.27 +/- 10.24 micromol/dl, and 0.02 +/- 0.02 micromol/dl (means +/- SD), respectively. The levels of sterol and steroid measured in breast duct fluids that were turbid, brown, dark green, or milky in color (n = 9) (mean levels, 3.20 +/- 2.97 mmol/dl for free cholesterol and 14.77 +/- 13.75 micromol/dl for DHEAS) were significantly (P < 0.01) higher than the levels in clear or serous breast fluids (n = 21) (mean levels, 0.14 +/- 0.13 mmol/dl for free cholesterol and 0.04 +/- 0.07 micromol/dl for DHEAS).  相似文献   

5.
The concentrations of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), androstenedione (A-dione), testosterone (T) and dihydrotestosterone (DHT) have been measured before and after castration in men and two animal models, namely the rat and the guinea pig. In adult men, the pre-castration levels of plasma DHEAS and DHEA were measured at 1839 +/- 320 and 2.4 +/- 0.5 ng/ml, respectively, while in both animal models, the concentrations of these two steroids were below 0.3 ng/ml. Orchiectomy in men reduced plasma T and DHT levels from 2.9 +/- 0.1 and 0.60 +/- 0.10 to 0.42 +/- 0.21 and 0.05 +/- 0.01 ng/ml (P less than 0.01), respectively, while there was no significant effect observed on DHEAS, DHEA and A-dione levels. By contrast, castration in the rat reduced the low levels of circulating DHEA and A-dione below the detection of the radioimmunoassay (RIA) used. In castrated guinea pig, a small quantity of plasma A-dione (0.07 +/- 0.02 ng/ml) was measured while DHEA was undetectable. Moreover, in the rat and guinea pig, plasma T and DHT levels became undetectable. Following administration of the antiandrogen Flutamide for two weeks in the castrated rat and guinea pig, prostate weight was not further reduced, thus indicating that there is no significant androgenic activity left following castration of these two species. In fact, castration in the rat and guinea pig caused a decrease in prostatic levels of DHT from 4.24 +/- 0.351 and 9.42 +/- 1.43 ng/g, respectively, to undetectable levels. In men, on the other hand, the prostatic DHT levels were only inhibited from 5.24 +/- 0.59 to 2.70 +/- 1.50 ng/g, respectively. As expected, when Flutamide was administered to the rat and the guinea pig, the levels of prostatic steroids remained undetectable while, in men, the DHT content in the prostate was further reduced to undetectable values. In summary, the plasma levels of DHEAS, DHEA, delta 4-dione are markedly different between men and both animal models used and furthermore, measurements of prostatic levels of androgens suggest that the high plasma levels of these steroids are likely responsible for the presence of important amounts of DHT in human prostate after castration.  相似文献   

6.
Neurosteroids, pregnenolone (Preg), dehydroepiandrosterone (DHEA) and their sulfates (PregS and DHEAS) are reported to exert their modulatory effects of neuronal excitability and synaptic plasticity via amino acid receptors, which affect and regulate the learning and memory process, mood, and depression. Although the brain levels of these steroids have been reported in rodents, the strain differences of the levels of these steroids have not been demonstrated. We examined the concentrations of Preg, 17-OH-Preg, DHEA, androstenediol (ADIOL) and their sulfates in whole brains from DBA/2, C57BL/6, BALB/c, ddY and ICR mice, the genetic backgrounds of which are different. No differences in the brain levels of Preg and DHEA were found among the strains. In contrast, PregS levels in DBA/2 were significantly lower than in the others, while DHEAS concentrations in DBA/2 were significantly higher than those in other strains. Strain differences were found in 17-OH-Preg, ADIOL and 17-OH-PregS but not in ADIOLS levels. The ranges of Preg and PregS levels were the highest among the steroids studied. Further, we measured serum these steroid levels. Although strain differences were also found in serum steroids, correlation study between brain and serum levels revealed that brain neurosteroids studied may not come from peripheral circulation. In conclusion, this is the first report of demonstrating mammalian brain levels of 17-OH-Preg, ADIOL, 17-OH-PregS and ADIOLS and the strain differences in neurosteroid levels in mice brains. The differences in levels may involve the strain differences in their behavior, e.g. aggression, adaptation to stress or learning, in mice.  相似文献   

7.
This study investigated adrenal androgens (AA), gonadotropins, and cortisol in castrated and gonad-intact male rhesus macaques from birth through infancy. Blood samples were collected longitudinally from castrated (n = 6; weekly, 1-40 wk) and intact (n = 4; every other week, 1-17 wk) males. Plasma concentrations of AA were determined by liquid chromatography-tandem mass spectrometry, and plasma concentrations of cortisol and gonadotropins were determined by RIA. Dehydroepiandrosterone sulfate (DHEAS) concentrations increased almost threefold (to 8 wk), dehydroepiandrosterone (DHEA) increased more than eightfold (to 11 wk), and androstenedione doubled (to 15 wk) in five castrated infant males and declined continuously thereafter. A sixth castrated male had markedly different temporal patterns and concentrations (many times more than 2 SDs from the cohort mean) of AA and gonadotropins from first sampling (3 wk) and was excluded from analysis. Cortisol increased over 16 wk but correlated poorly with DHEAS. Luteinizing and follicle-stimulating hormones increased to peaks at 3 and 7 wk, respectively. Testis-intact males exhibited similar profiles, but with earlier peaks of DHEAS (5 wk) and DHEA and androstenedione (7 wk). Peak concentrations of DHEAS were lower and those of DHEA and androstenedione were higher in intact than castrated infants. Testosterone was undetectable in castrated males and >0.5 ng/ml in intact males but was not correlated with DHEA or DHEAS. These are the first data documenting a transient increase in AA secretion during infancy in an Old World primate and are consistent with the previously documented time course of zona reticularis development that accompanies increases in androgen synthetic capacity of the adrenal. The rhesus is a promising model for androgen secretion from the human adrenal cortex.  相似文献   

8.
A highly sensitive and specific method has been developed for the simultaneous measurement of free (unconjugated) or sulfate-conjugated forms of dehydroepiandrosterone (DHEA), 7alpha-hydroxy-DHEA (7alpha-OH-DHEA), 7beta-hydroxy-DHEA (7beta-OH-DHEA), and 7-oxo-DHEA (7-oxo-DHEA) in human serum. This method is based upon a stable isotope-dilution technique by gas chromatography-selected-ion monitoring mass spectrometry. Free steroids were extracted from serum with an organic solvent and the sulfate-conjugated steroids remained in aqueous phase. Free steroids were purified by solid-phase extraction, while sulfate-conjugated steroids were hydrolyzed by sulfatase and deconjugated steroids were purified by solid-phase extractions. The extracts were treated with O-methylhydroxylamine hydrochloride and were subsequently dimethylisopropylsilylated. The resulting methyloxime-dimethylisopropylsilyl (MO-DMIPS) ether derivatives were quantified by gas chromatography-selected-ion monitoring mass spectrometry in a high-resolution mode. The detection limits of MO-DMIPS ether derivatives of DHEA, 7alpha-OH-DHEA, 7beta-OH-DHEA and 7-oxo-DHEA were 1.0, 0.5, 0.5 and 2.0pg, respectively. Coefficients of variation between samples ranged from 10.6 to 22.9% for free 7-oxygenated DHEA to less than 10% for DHEA and sulfate-conjugated 7-oxygenated DHEA. The concentrations of these steroids were measured in 18 sera samples from healthy volunteers (9 males and 9 females; aged 23-78 years). Free DHEA, 7alpha-OH-DHEA, 7beta-OH-DHEA and 7-oxo-DHEA levels ranged between 0.21-3.55, 0.001-0.194, 0.003-0.481, and 0.000-0.077ng/ml, respectively, and the sulfate-conjugated steroid levels of these metabolites ranged between 253-4681, 0.082-3.001, 0.008-0.903, and 0.107-0.803ng/ml, respectively. The free DHEA-related steroid concentrations were much lower than those previously measured by RIA and low-resolution GC-MS. The present method made it possible to determine simultaneously serum DHEA-related steroid levels with sufficient sensitivity and accuracy.  相似文献   

9.
There are a few reports that chronic fatigue syndrome (CFS) may be accompanied by changes in hormones, such as dehydroepiandrosterone (DHEA) and insulin-like growth factor (IGF1). This study examines the serum concentrations of DHEA-sulfate (DHEAS), IGF1 and IGF1 binding protein-3 (IGFBP3) in 20 patients with CFS and in 12 normal controls. The IGFBP3/IGF1 ratio was computed as an index for IGF1 availability. We found significantly lower serum DHEAS concentrations in CFS, but no significant differences either in IGF1 or the IGFBP3/IGF1 ratio between CFS patients and normal controls. The decrease in serum DHEAS was highly sensitive and specific for CFS. There were significant and positive correlations between serum DHEAS and serum zinc and the mitogen-induced expression of the CD69 molecule on CD3+CD8+ T cells (an indicator of early T cell activation). There was a significant and negative correlation between serum DHEAS and the increase in the serum alpha-2 protein fraction (an inflammatory marker). Serum IGF1, but not DHEAS, was significantly and inversely correlated to age. The results show that CFS is accompanied by lowered levels of DHEAS and that the latter may play a role in the immune (defect in the early activation of T cells) and the inflammatory pathophysiology of CFS.  相似文献   

10.
Dehydroepiandrosterone (DHEA) and its sulfonated form dehydroepiandrosterone sulfate (DHEAS) are the main circulating steroid hormones and many epidemiological studies show an inverse relationship between DHEA/DHEAS levels and muscle loss for which the primary cause is the accelerated protein breakdown. The aim of this work was to determine whether DHEA/DHEAS supplementation in differentiating C2C12 skeletal muscle cells might influence the expression of the atrophy-related ubiquitin ligase, MuRF-1, and thereby impact key molecules of the differentiation program. DHEA is the prohormone crucial for sex steroid synthesis, and DHEAS is thought to be its reservoir. However, our preliminary experiments showed that DHEAS, but not DHEA, is able to influence MuRF-1 expression. Therefore, we treated differentiating C2C12 cells with various concentrations of DHEAS and analyzed the expression of MuRF-1, Hsp70, myosin heavy chain (MHC), myogenin, and the activity of creatine kinase. We observed that DHEAS at physiological concentrations downregulates MuRF-1 expression and affects muscle differentiation, as shown by the increased levels of MHC, which is a sarcomeric protein that undergoes MuRF-1-dependent degradation, and also by an increase in creatine kinase activity and myogenin expression, which are two other well-known markers of differentiation. Moreover, we found that DHEAS might have a protective effect on differentiating cells as suggested by the augmented levels of Hsp70, a member of heat shock proteins family that, besides its cytoprotective action, seems to have a regulatory role on key atrophy genes such as MuRF-1. In conclusion, our data shed light on the role of DHEAS at physiologic concentrations in maintaining muscle mass.  相似文献   

11.
Several endogenous hormones have been proven to stimulate cancer growth, whereas at present very few hormones are known to display oncostatic activity. The most widely investigated antitumor hormone is the pineal indole melatonin (MLT), and cancer progression has been shown to be associated with a decline in MLT secretion. Recently, another hormone, the adrenal steroid dehydroepiandrosterone-sulfate (DHEAS), has appeared to exert antitumor effects similar to those previously described for MLT. In addition, experimental studies suggest a diminished DHEAS production with neoplastic progression. This preliminary study was performed to evaluate the daily secretion of DHEAS in a group of early and advanced cancer patients. The study included 70 patients with solid tumors (gastrointestinal tract tumors: 28; breast cancer: 24; non-small cell lung cancer: 18), 28 without and 42 with distant metastases. The serum levels of DHEAS were measured by RIA in blood samples collected in the morning. The control group consisted of 100 age- and sex-matched healthy subjects. No significant difference in mean serum levels of DHEAS was observed between controls and non-metastatic patients. In contrast, metastatic patients, irrespectively of tumor histotype, showed significantly lower mean levels of DHEAS with respect to either controls or non-metastatic patients. Moreover, metastatic patients with visceral locations showed significantly lower values of DHEAS than those with bone or soft-tissue metastases. This preliminary study would suggest there to be a deficiency in the daily DHEA secretion in patients with disseminated cancer. Further studies evaluating circadian DHEAS secretion in relation in that of the pineal hormone MLT will be required to better define the biological significance of the advanced cancer-related decline in endogenous DHEAS production.  相似文献   

12.
《Life sciences》1996,59(11):PL147-PL157
Dioscorea is a yam steroid extract used in commercial steroid synthesis and consumed by people. DHEA is a steroid which declines with age, but without known activity. This study was designed to determine whether dioscorea supplementation could increase serum dehydroepiandrosterone sulfate (DHEAS) in humans and modulate lipid levels in older people. The subjects were selected volunteers aged 65–82 years. The serum DHEAS level, lipid peroxidation and lipid profile were assessed. Three weeks of dioscorea supplementation had no affect on serum DHEAS level. However DHEA intake of 85 mg/day increased serum DHEA levels 100.3 %. DHEA and dioscorea significantly reduced serum lipid peroxidation, lowered serum triglycerides, phospholipid and increased HDL levels. Both DHEA and the steroid yam extract, dioscorea, have significant activities as antioxidant to modify serum lipid levels.  相似文献   

13.
Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) are endogenous steroids that have recently been widely publicized as potential treatments for many disorders. This paper describes a gas chromatographic–ion trap mass spectrophotometric assay with selected reaction monitoring for measurement of DHEA and DHEAS levels. The hormones and internal standard (5-androsten-3β-ol-16-one methyl ester) are extracted from serum with Oasis solid-phase extraction tubes. The extracted steroids are dissolved in methanol and injected into a Finnigan GCQ ion trap mass spectrometer. In the selected reaction mode, both DHEA and DHEAS can be identified and quantified in a single injection. No derivatization or expensive deuterated internal standards are required.  相似文献   

14.
Zofková I  Bahbouh R  Hill M 《Steroids》2000,65(12):857-861
In this cross-sectional study performed on 147 healthy or osteoporotic, but otherwise normal premenopausal (n = 26 and n = 13, respectively) or postmenopausal (n = 40 and n = 68, respectively) women aged 40.1+/-9.9 and 61.9+/-8.9 years, respectively (range 20-82 years), serum ovarian and adrenal sex steroids and their relationship to bone mineral density (BMD) were evaluated. The levels of dehydroepiandrosterone sulfate (DHEAS), dehydroepiandrosterone (DHEA), androstenedione (AD), and estradiol correlated positively with BMD at the hip and spine as did serum testosterone with BMD at the spine. An inverse relationship was found between sex hormone binding globulin (SHBG) levels and BMD at the spine and hip. After adjustment for age, body mass, and sex steroid confounders, the bioavailable testosterone value (but not the DHEAS, DHEA, AD, or SHBG) values was demonstrated to be an independent determinant of BMD at the spine (beta 0.18, P<0.02) and hip (beta 0.24, P<0.02). Similarly, estradiol was found to be an independent determinant of BMD at the spine (beta 0.25, P<0.007). However, only SHBG levels (but not other steroid parameters) correlated positively with indices of bone remodeling, namely, serum osteocalcin and cross-linked telopeptide of type I collagen (ICTP). The present study suggests that a major decline in index of free testosterone (testosterone/SHBG) may influence the development of female osteoporosis. The clinical significance of circulating SHBG levels in the assessement of bone metabolic turnover remains to be established.  相似文献   

15.
In order to ascertain the kinetics of absorption and metabolism of transdermally administered dehydroepiandrosterone (DHEA), 10 men 29-72 years old (mean 52.4+/-14.5) received 50 mg DHEA/day in a gel applied onto the skin of the abdomen for 5 consecutive days. The objective was to establish the extent to which DHEA influences the levels of gonadotropins, sex hormone-binding globulin and lipids. It was found that DHEA is well absorbed and rapidly metabolized to its sulfate (DHEAS), androstenedione, and consequently to testosterone and estradiol. The DHEA levels that markedly increased after the first doses gradually declined already during the application, and this decline proceeded even after it was discontinued, reaching levels significantly lower than the original ones. On the other hand, the levels of DHEA metabolites (with the exception of DHEAS) rose during the application and reached values significantly higher than the basal ones within 5 weeks. This effect was accompanied by significantly decreased levels of LH. The serum levels of lipids, namely of cholesterol (both HDL and LDL cholesterol), triglycerides, apolipoproteins A-I and B and lipoprotein(a) after DHEA application were not changed significantly, and the atherogenic index (AI) remained unaltered. However, some correlations between hormones and lipids were found. Negative correlations concerned the following indices: DHEA/Lp(a); DHEAS/cholesterol; DHEA, DHEAS, testosterone/TG; testosterone/AI. On the other hand, LH, FSH/cholesterol, FSH, SHBG/LDL cholesterol, FSH/Apo B, Lp(a) correlated positively. It can be concluded that transdermal short-time application of DHEA results in a decrease of endogenous DHEA after finishing the treatment, with a parallel marked increase in the levels of sex hormones. Using this application protocol, exogenous DHEA neither altered the lipid spectrum, nor did it influence the atherogenic index.  相似文献   

16.
HYPOTHESIS: Androgen excess carries varied clinical manifestations in women. Although testosterone and dehydroepiandrostendionesulfate (DHEAS) determination is considered useful in diagnostic workup, there is no laboratory definition that sufficiently describes androgen excess. DESIGN: We studied 464 hirsute women with a Ferriman and Gallwey score of at least 8 between 2000 and 2005. Our examination included clinical data, total testosterone (T), sex hormone-binding globulin (SHBG), the free androgen index (FAI), and DHEAS. Additionally, androstendione, 17alpha-hydroxyprogesterone (17OHP), dehydroepiandrostendione (DHEA), and 11-deoxycortisol were determined at baseline and 60min after corticotropin challenge (250microg synacthen). RESULTS: Of 464 women, 77.6% fulfilled the clinical criteria for hyperandrogenemia. Of these 360 women, 78.1% had hyperandrogenic hirsutism. Of these 281 women, 43.4% showed increased stimulation of 17OHP to 250microg of synacthen. Another 37.4% showed adrenal steroid biosynthesis defects other than 21alpha-hydroxylase deficiency, such as defective 11beta-hydroxylation or 3beta-hydroxysteroid dehydrogenase malfunction. The diagnosis of polycystic ovary syndrome was applicable to 12.4%. In addition, our results show that 72% of 281 patients with secondary hirsutism had normal T concentrations, and 55% had a normal FAI. Only 5% of hirsute patients with a normal FAI had elevated DHEAS values. However, 40% showed elevated DHEA levels, while 26% of the women with normal FAI showed androstendione values over the maximal levels in the 79 controls. CONCLUSIONS: Our data suggest that in addition to testosterone and FAI, androstendione and DHEA are significantly helpful parameters in diagnosing hyperandrogenemia in hirsute women. DHEAS was not found to be helpful.  相似文献   

17.
It is generally assumed that circulating dehydroepiandrosterone sulfate (DHEAS) can be desulfated and further metabolized to estrogen, which is of concern for all patients with estrogen-responsive breast cancer. We addressed this issue by comparing the effects of DHEAS, its desulfated form DHEA, and 17ß-estradiol on human metastatic, estrogen-responsive MCF-7 breast cancer cells.Physiological concentrations of DHEAS promoted phosphorylation of Erk1/2, whereas DHEA and 17ß-estradiol failed to stimulate Erk1/2 phosphorylation, indicating that the sulfated steroid acts as an autonomous hormone. Exposure of MCF-7 cells to 17ß-estradiol stimulated cell proliferation and the expression of pro-metastatic and pro-invasive elements such as claudin-1, matrix metalloproteinase 9 (MMP9), and the CC chemokine ligand 2 (CCL2). In contrast, treatment with DHEAS did not stimulate these responses but prevented all of the actions of 17ß-estradiol, and as a consequence cell migration and invasion were completely inhibited.The results of this study not only challenge the assumption that DHEAS poses a danger as an endogenous source of estrogen, they rather favor the idea that keeping DHEAS levels within a physiological range might be supportive in treating estrogen-responsive breast cancer.  相似文献   

18.
Liu D  Ren M  Bing X  Stotts C  Deorah S  Love-Homan L  Dillon JS 《Steroids》2006,71(8):691-699
Both dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) affect glucose stimulated insulin secretion, though their cellular mechanisms of action are not well characterized. We tested the hypothesis that human physiological concentrations of DHEA alter insulin secretion by an action initiated at the plasma membrane of beta-cells. DHEA alone had no effect on intracellular calcium concentration ([Ca(2+)](i)) in a rat beta-cell line (INS-1). However, it caused an immediate and dose-dependent inhibition of carbachol-induced Ca(2+) release from intracellular stores, with a 25% inhibition at zero. One nanometer DHEA. DHEA also inhibited the Ca(2+) mobilizing effect of bombesin (29% decrease), but did not inhibit the influx of extracellular Ca(2+) evoked by glyburide (100 microM) or glucose (15 mM). The steroids (androstenedione, 17-alpha-hydroxypregnenolone, and DHEAS) had no inhibitory effect on carbachol-induced intracellular Ca(2+) release. The action of DHEA depended on a signal initiated at the plasma membrane, since membrane impermeant DHEA-BSA complexes also inhibited the carbachol effect on [Ca(2+)](i) (39% decrease). The inhibition of carbachol-induced Ca(2+) release by DHEA was blocked by pertussis toxin (PTX). DHEA also inhibited the carbachol induction of phosphoinositide generation, with a maximal inhibition at 0.1 nM DHEA. Furthermore, DHEA inhibited insulin secretion induced by carbachol in INS-1 cells by 25%, and in human pancreatic islets by 53%. Taken together, this is the first report showing that human physiological concentrations of DHEA decrease agonist-induced Ca(2+) release by a rapid, non-genomic mechanism in INS-1 cells. Furthermore, these data provide evidence consistent with the existence of a specific plasma membrane DHEA receptor, mediating this signal transduction pathway by pertussis toxin-sensitive G-proteins.  相似文献   

19.
Fatigue is a common debilitating complication of primary biliary cirrhosis (PBC), the pathophysiologic mechanism of which is poorly understood. Recently, the neuroactive steroid dehydroepinadrosterone sulfate (DHEAS) was reported to be implicated in Chronic Fatigue Syndrome in the absence of liver disease. The present study was undertaken to analyse fatigue scores and their relationship with disease severity and circulating levels of DHEAS as well as its precursors DHEA and pregnenolone in PBC patients with (n=15) or without fatigue (n=10) compared to control subjects (n=11). Fatigue was assessed using the fatigue impact scale (FIS) including cognitive, physical and psychosocial subclasses. Steroids were measured by radioimmunoassay or gas chromatography/mass spectrometry. Plasma concentrations of DHEAS were significantly reduced in PBC patients with fatigue as compared to controls, while those of its precursors DHEA and pregnenolone remained within the control range. Plasma levels of DHEAS in PBC patients were significantly correlated with fatigue severity as reflected by total FIS scores including total (rp=-0.42; p=0.018), as well as the cognitive (rp=-0.37; p=0.03), physical (rp=-0.48; p=0.006) and psychosocial (rp=-0.35; p=0.04) subclasses of fatigue scores. No correlation of fatigue scores was observed with indices of liver function. These findings suggest that reduced levels of the neurosteroid DHEAS may contribute to fatigue in patients with PBC; substitutive therapy using DHEAS or its precursor DHEA could be beneficial in the management of fatigue in patients with low levels of DHEAS.  相似文献   

20.
Le Bail JC  Lotfi H  Charles L  Pépin D  Habrioux G 《Steroids》2002,67(13-14):1057-1064
Metabolism of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), and androstene-3,17-dione (delta(4)) was performed at their physiological plasma concentrations in MCF-7 cell cultures (1 microM, 10 and 2 nM, respectively). Final metabolic products of these steroids were separated by HPLC-radioactive flow detection and identified by LC/MS or MS/MS. Typical and specific mass fragmentation spectra identified the presence of estrone (E(1)), 17beta-estradiol (E(2)), delta(4), DHEA, 5-androstene-3beta,17beta-diol (delta(5)), and testosterone as principal DHEAS metabolites. Other steroids, such as androstenedione, androsterone, and DHEA fatty acid esters at very low concentrations (from pM to nM), were also obtained after steroid incubation. This highly specific method allowed us to conclude whether a metabolite and enzymatic activity of interest were present in MCF-7 cells or not. We also showed that DHEAS at its physiological plasma concentration may be converted into estrogens and estrogen-like compounds in breast cancer cells. The estrogenic action of DHEAS on breast cancer cells was also measured by bioluminescence in a stably transfected human breast cancer MCF-7 cell line with a reporter gene that allowed expression of the firefly luciferase enzyme under the control of an estrogen regulatory element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号