首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA extracted from a free polysome fraction from rat liver was used to direct translation in nuclease-treated rabbit reticulocyte lysates, and the [35S]methionine-labelled, in vitro-synthesized, cytochrome b5 reductase was isolated with specific antibodies. Analysis by SDS-polyacrylamide gel electrophoresis, non-equilibrium pH gradient electrophoresis and one-dimensional peptide mapping failed to reveal any difference between the in vitro-synthesized reductase and the enzyme endogenous to rat liver microsomes. To study the integration of the in vitro-synthesized reductase into membranes, carboxypeptidase Y was used as a proteolytic probe. The reductase endogenous to rat liver microsomes was resistant to attack by carboxypeptidase Y, but was degraded to a smaller form when the microsomes were solubilized by detergent. Likewise, the enzyme synthesized in vitro was attacked by carboxypeptidase Y, but became largely resistant after post-translational incubation with dog pancreatic microsomes, indicating that an integration into membranes similar to the physiological one had occurred. It is concluded that cytochrome b5 reductase is probably not synthesized as a precursor and inserts post-translationally into the membrane. The results are discussed in relation to the particular subcellular distribution of the reductase and to the possible topology in the lipid bilayer of its C-terminal non-polar membrane-binding segment.  相似文献   

2.
ESR and microcalorimetry methods were employed to investigate the thermotropic properties and structure of proteoliposomes that incorporate cytochrome P450 and DMPC-DMPG binary mixtures depending on cytochrome P450 content and phospholipid composition. The microcalorimetry data demonstrated that the incorporation of cytochrome P450 into the phospholipid mixture resulted in bilayer thermal stabilization. The maximum shift of the temperature and proteoliposome transition enthalpy were achieved at the protein/lipid molar ratio of 1:1000 in almost equimolar phospholipid mixture. Using fatty acids that were spin-labeled at different positions (C5, C12, C16), it has been shown that the incorporation of cytochrome P450 into lipid mixtures containing 0-100% DMPG decreases C12 and C16 mobility and increases the C5 order parameter at transition phase (30 degrees C) and liquid crystal phase (37 degrees C) of bilayer. The maximum alteration amplitude of the probes used was not characteristic for the separate DMPC and DMPG but rather for the mixture at the molar ratio close to equimolar value. It is proposed that cytochrome P450 incorporation into the binary mixture initiated the formation of the bilayer crystal-like phase.  相似文献   

3.
Cytochrome b5 was asymmetrically reconstituted into small lipid vesicles made of a highly deuterated phospholipid. Small-angle neutron diffraction patterns were collected in a series of H2O-D2O mixtures from vesicles consisting of lipid and native or trypsinized cytochrome b5. The second moment of the radial distribution of scattering density in the vesicles was derived from these data and was compared to values calculated from three proposed models, which differ by the degree that cytochrome b5 penetrates the lipid bilayer. The model in which the hydrophobic domain of the protein is distributed across the bilayer agreed most closely with the data.  相似文献   

4.
Human phagocyte cytochrome b is the terminal component of the microbicidal superoxide generating system. Although the primary structure of this protein has been determined, little is known about the placement of the heme prosthetic groups in this heterodimeric integral membrane protein. Analysis of the cytochrome using lithium dodecyl sulfate-polyacrylamide gel electrophoresis at 0 degree C followed by tetramethylbenzidine heme staining demonstrated the presence of heme in both the 91- and 22-kDa subunits identified by Western blot analysis using peptide specific antisera. Exposure of cytochrome b (purified or in isolated neutrophil plasma membranes) to Staphylococcal protease V8 or trypsin did not affect absorbance spectra. However, such treatment resulted in degradation of both subunits to smaller fragments, including characteristic immunoreactive 20-kDa fragments of both the large and small subunits of the cytochrome that retained one or both of the hemes. The spectral stability to proteolysis and size of the proteolytic heme-containing fragments generated explains previous reports which suggested that the heme resided in the small subunit. Our current results indicate that human neutrophil cytochrome b is a bi-heme or possibly tri-heme molecule with at least one heme residing in the large subunit and one shared between both subunits and that the heme-containing regions of the cytochrome probably lie within the membrane lipid bilayer. Such a multi-heme structure would be consistent with an electron transfer function for this cytochrome by providing an efficient mechanism for transferring electrons across the plasma membrane to the extracellular surface where oxygen could be reduced to create superoxide.  相似文献   

5.
W L Vaz  R H Austin    H Vogel 《Biophysical journal》1979,26(3):415-426
A derivative of the integral membranes protein, cytochrome b5, has been prepared in which the native heme group has been replaced by the structurally similar rhodium(III)-protoporphyrin IX. This metalloporphyrin has a finite triplet yield with a single exponential decay time of 22 microsecond in water. After insertion of the metalloporphyrin into the protein, its triplet-state decay becomes strongly nonexponential with at least three equal amplitude components with time constants varying over a range of 100. The derivatized protein has been incorporated into unilamellar liposomes prepared from dimyristoyllecithin, and the rotational diffusion of the protein in the lipid bilayer has been studied at temperatures above and below the lipid phase transition temperature via triplet absorbance anisotropy decay. The anisotropy decay curves are biphasic both above and below the lipid phase transition. The rotational diffusion constant is found to be 2.4 X 10(5) s-1 at 35 degrees C, and 1.1 X 10(4) s-1 at 10 degrees C, both being calculated from the fast decay component. The ratio of the limiting anisotropy to the initial anisotropy is 0.6 at both temperatures. This implies a cone of restricted motion of 34 degrees for the protein in the bilayer.  相似文献   

6.
Cytochrome b5 was reconstituted with a highly deuterated phospholipid to form ordered multilayers consisting of repeated centrosymmetric pairs of asymmetric lipid-protein bilayers. Lamellar neutron diffraction data were collected to approximately 29 A resolution, and have been interpreted using models for the interaction of the membrane-binding domain of cytochrome b5 with the lipid bilayer. A range of different models was examined, and those in which the protein penetrates well into the bilayer, possibly spanning it, are favored.  相似文献   

7.
Purified cytochrome b5 from rabbit liver microsomes was bound to liposomes prepared from microsomal lipids. Tyrosyl and tryptophyl side chains of the protein were modified by water-soluble reagents and the reactivities of these amino acid residues in the liposome-bound cytochrome b5 were compared to those of the free protein. At pH 13, 80% of the tyrosines in lipid-free cytochrome b5 ionized immediately, whereas in the lipid-bound protein only 65% ionized within the first minute. In contrast, acetylation with acetylimidazole resulted in the conversion of all 5 tyrosine groups of lipid-free as well as lipid-bound cytochrome b5 into O-acetylated derivatives, which upon treatment with hydroxylamine were completely deacetylated. Reaction with N-bromosuccinimide revealed that only 60% of the 4 tryptophan residues present in cytochrome b5 were accessible to the reagent in the lipid-bound protein, although all tryptophans could be modified in lipid free cytochrome b5. It was concluded that the two tyrosines in the region linking the protein to the membrane are not shielded by lipid bilayer but that of the three tryptophans in the same region one is completely buried in the membrane, whereas the remaining two tryptophans may be both partly exposed to the solvent or alternatively, one may be partially and the other completely exposed.  相似文献   

8.
Cytochrome b5 induced flip-flop of phosphatidylethanolamine (PE) in sonicated vesicles prepared from a 9:1 mixture of phosphatidylcholine (PC) to phosphatidylethanolamine was determined as follows. First, vesicles having a nonequilibrium distribution of PE across the bilayer were prepared by amidinating the external amino groups with isethionyl acetimidate. Amidinated cytochrome b5 was then added, and after the protein was completely bound, the rate of appearance of fresh PE on the outer surface was determined by removing aliquots at timed intervals and titrating the external amino groups with trinitrobenzenesulfonic acid. The results show an initial rapid phase of flip-flop (especially in the presence of salt) followed by a very slow phase, at 25 degrees C. Similar results were obtained when cytochrome b5 was introduced into the amidinated vesicles by spontaneous transfer from PC donor vesicles. These results indicate that the accumulation of the transferable ("loose") form of cytochrome b5 on the outer surface of a vesicle causes a transient, global destabilization of the bilayer that is relieved by lipid flip-flop. We speculate that this mechanism may be a significant driving force for the transfer of amphipathic molecules across membranes.  相似文献   

9.
Cytochrome b5 is a microsomal membrane protein which provides reducing potential to delta 5-, delta 6-, and delta 9-fatty acid desaturases through its interaction with cytochrome b5 reductase. Low angle x-ray diffraction has been used to determine the structure of an asymmetrically reconstituted cytochrome b5:DMPC model membrane system. Differential scanning calorimetry and fluorescence anisotropy studies were performed to examine the bilayer physical dynamics of this reconstituted system. These latter studies allow us to constrain structural models to those which are consistent with physical dynamics data. Additionally, because the nonpolar peptide secondary structure remains unclear, we tested the sensitivity of our model to different nonpolar peptide domain configurations. In this modeling approach, the nonpolar peptide moiety was arranged in the membrane to meet such chemically determined criteria as protease susceptibility of carboxyl- and amino-termini, tyrosine availability for pH titration and tryptophan 109 location, et cetera. In these studies, we have obtained a reconstituted cytochrome b5:DMPC bilayer structure at approximately 6.3 A resolution and conclude that the nonpolar peptide does not penetrate beyond the bilayer midplane. Structural correlations with calorimetry, fluorescence anisotropy and acyl chain packing data suggest that asymmetric cytochrome b5 incorporation into the bilayer increases acyl chain order. Additionally, we suggest that the heme peptide:bilayer interaction facilitates a discreet heme peptide orientation which would be dependent upon phospholipid headgroup composition.  相似文献   

10.
Expression of the membrane-bound form of rabbit cytochrome b(5) in Escherichia coli has been significantly improved through the use of the T7 expression vector pLW01 (A. Bridges, L. Gruenke, Y.-T. Chang, I. Vakser, G. Loew, and L. Waskell, 1998, J. Biol. Chem. 273, 17036-17049) in conjunction with strain C41(DE3) (B. Miroux and J. Walker, 1996, J. Mol. Biol. 260, 289-298). Cell cultures expressing the cytochrome b(5) contained an average of 820 mg/liter of culture and reached peak levels as high as 1100 mg/liter when higher antibiotic concentrations were used. Maximal levels were obtained from cultures when expression was induced with 10 microM IPTG. Approximately 90% of the cytochrome b(5) was expressed as apoprotein which was reconstituted by addition of exogenous heme. The cytochrome b(5) was purified from detergent-solubilized bacterial membranes using anion-exchange chromatography on DEAE-Sepharose followed by size-exclusion chromatography on Superdex-75. Purification of cytochrome b(5) from a 500-ml culture yielded 121 mg of protein which had a specific content of 50 nmol of heme per milligram of protein with an overall recovery of 35%. The final cytochrome b(5) was free of any detectable contaminants when analyzed by SDS-PAGE.  相似文献   

11.
Carboxypeptidase Y preparations from baker's yeast have been found to exhibit endopeptidase activity when assayed with oxidized insulin B-chain. Amino acid analysis and peptide isolation studies indicate that a specific internal cleavage occurs between Leu-15 and Tyr-16 in addition to the C-terminal carboxypeptidase activity. Blocking the C-terminal residue of the substrate prevents the exopeptidase activity of the enzyme, but has no effect on the endopeptidase activity. On the other hand, pepstatin A inhibits the endopeptidase but not the exopeptidase activity. These results suggest that the endopeptidase activity is due to the presence of contaminating amounts of yeast proteinase A and indicate that caution should be taken when employing carboxypeptidase Y preparations for sequence studies.  相似文献   

12.
K Mihara  R Sato  R Sakakibara  H Wada 《Biochemistry》1978,17(14):2839-2834
Microsomal NADH-cytochrome b5 reductase is an amphiphilic protein consisting of a hydrophilic (catalytic) region and a hydrophobic (membrane-binding) segment. Digestion of the reductase purified from rabbit liver microsomes with carboxypeptidase Y (CPY), but not with aminopeptidases, resulted in the abolishment of the capacities of the reductase to bind to phosphatidylcholine liposomes and to reconstitute an active NADH-cytochrome c reductase system upon mixing with cytochrome b5. The NADH-ferricyanide reductase activity of the flavoprotein was, however, inactivated only slightly by the CPY digestion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid analyses indicated that the CPY treatment removed about 30 amino acid residues from the tcooh terminus of the reductase and that about 70% of the amino acids released were hydrophobic. It is concluded that the hydrophobic region of the reductase, responsible for both membrane binding and effective reconstitution of NADH-cytochrome c reductase activity, is located at the COOH-terminal portion of the molecule. No NH2-terminal residue could be detected in the intact and CPY-modified reductase preparations. The location of the hydrophobic, membrane-binding segment at the COOH-terminal end and the masked NH2 terminus have also been reported for cytochrome b5, another microsomal membrane protein.  相似文献   

13.
According to previous authors, cytochrome b5, when extracted from bovine liver by a detergent method, is called cytochrome d-b5. On the other hand, the protein obtained after trypsin action, which eliminates an hydrophobic peptide of about 54 residues, is called cytochrome t-b5. Fluorescence polarization of the dansyl phosphatidylethanolamine probe inserted into phospholipid vesicles is very sensitive to the binding of proteins, and so is a useful method to study lipid-protein interactions. The chromophore mobility, R, decreases markedly when dipalmitoyl phosphatidylcholine vesicles are incubated with cytochrome d-b5, whereas R does not change for cytochrome c and cytochrome t-b5. This can be interpreted as a strengthening of bilayer, only due to the interaction of the hydrophobic peptide tail. Interaction of dipalmitoly phosphatidylcholine vesicles with cytochrome d-b5 occurs either below or above the melting temperature of the aliphatic chains (41 degrees C). Even for a high protein to lipid molar ratio (1 molecule of protein for 40 phospholipid molecules), the melting temperature is apparently unaffected. Phosphatidylserine and phosphatidylinositol do not interact at pH 7.7 with cytochrome d-b5, because electrostatic forces prevent formation of complexes. At low pH, the interaction with the protein occurs, but the binding is mainly of electrostatic nature.  相似文献   

14.
The catalytic domain of cytochrome P450 is thought to contact the lipid core of the endoplasmic reticulum membrane based on antibody epitope accessibility, protease susceptibility, and hydrophobic surfaces present on P450 structures of solubilized forms of the proteins. Quenching by nitroxide spin label-modified phospholipids of the fluorescence of tryptophan residues substituted into cytochrome P450 2C2, modified to contain tryptophan only at position 120, was used to identify regions of P450 inserted into the lipid core and to estimate the depth of penetration. Consistent with the proposed models of cytochrome P450-membrane interaction, the fluorescence of tryptophans inserted at residues 36 and 69 in the two segments of P450 2C2 flanking the A-helix and at residue 380 in the beta2-2 strand was quenched by nitroxide spin labels on carbon 5 of the fatty acid tails of the phospholipids within the lipid bilayer. The fluorescence of tryptophan at 380 was also strongly quenched by a spin label on carbon 12 of the fatty acids suggesting it was deepest in the membrane. However, fluorescence of tryptophan substituted at residue 225 in the F-G loop, which was predicted to be in the lipid bilayer, was not quenched by the spin labels at carbons 5 and 12 of the fatty acids. The pattern of quenching of fluorescence for tryptophans at the other positions tested, 80, 189, 239, and 347, was similar to the parent protein indicating they were not inserted into the lipid bilayer as expected. The results are consistent with an orientation of cytochrome P450 2C2 in the membrane in which positions 36, 69, and 380 are inserted into the lipid bilayer and residues 80 and 225 are near or within the phospholipid headgroup region. In this orientation, the F-G loop, which contains residue 225, could form a dimerization interface as was observed in the P450 2C8 crystal structure (Schoch, G. A., et al. (2004) J. Biol. Chem. 279, 9497).  相似文献   

15.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The complete primary structure of bovine heart cytochrome c1 was established by analyses of peptide fragments prepared by digestion using trypsin, staphylococcal protease, and chymotrypsin and by cyanogen bromide cleavage of cytochrome c1 and its derivatives. The total number of amino acid residues is 241, giving a molecular weight of 27,924 including the heme group. The NH2- and COOH-terminal residues are serine and lysine, respectively. One characteristic of the protein is that cytochrome c1 contains 43.6% hydrophobic residues and the polarity is estimated to be 41.1%. No clear homology was found between cytochrome c1 and other membranous proteins such as cytochrome b5 or the subunits of cytochrome oxidase for which sequences have been reported. Cytochrome c1 is predicted to have a high content of alpha-helix (46%). Partial sequence studies were also carried out on cytochrome c1 preparations obtained by different procedures and showed that there is no difference among the sequences of various preparations of cytochrome c1. The presence of a hydrophobic cluster near the COOH-terminal region indicates that the COOH-terminal region of cytochrome C1 associates with, or is buried in, the phospholipid bilayer of the mitochondrial membrane.  相似文献   

17.
Structure of cytochrome b5 and its topology in the microsomal membrane   总被引:5,自引:0,他引:5  
The complete amino acid sequence of human and chicken liver microsomal cytochrome b5 was determined. The amino termini of cytochrome b5 from four other mammalian species were examined in order to determine their complete covalent structure. As in the rat species, cytochrome b5 preparations from man, rabbit, calf and horse had an acetylated alanine as the first residue. In contrast, the pig cytochrome had alanine at the amino terminus. The amino terminus of the chicken cytochrome b5 was also unmodified, and extended three residues absent in the mammalian species. In order to investigate whether the carboxy-terminal segment of cytochrome b5 is located on the cytosolic or the luminal side of the microsomal membrane, rabbit liver microsomes were treated with trypsin and subjected to gel filtration and high-pressure liquid chromatography. The nonpolar peptide isolated from these microsomes lacked the terminal hexapeptide, indicating that when cytochrome b5 is bound to intact microsomes, the carboxy terminus is located on the cytosolic side of the membrane and does not extend in the lumen of the endoplasmic reticulum.  相似文献   

18.
Incubation of rat homogeneous detergent-solubilized cytochrome b5 with rat liver microsomes resulted in specific binding of the hemoprotein which was rapidly reduced by NADH. The NADH cytochrome c reductase activity in these preparations increased in proportion to the amount of cytochrome bound. However, the extra-bound detergent-solubilized cytochrome b5 did inhibit NADPH-dependent N-demethylations, the NADH synergism and NADPH cytochrome P-450 reductase activity. Manganese protoporphyrin-apocytochrome complex when bound to microsomes in amounts equivalent to detergent-solubilised cytochrome b5 showed no effect on N-demethylation activity. Furthermore, the binding of cytochrome b5 preparations reconstituted from heme and apocytochrome b5 had no effect on either the NADPH-dependent N-demethylation of aminopyrene or ethylmorphine or the NADH synergism observed with rat liver microsomes. In addition, homogeneous cytochrome b5 eluted from three additional Sephadex G-100 columns showed no inhibitory effects when bound to liver microsomes. Spectral analyses of the acid-acetone extract of the hemoprotein showed an absorption peak at 278 nm suggesting that the homogeneous b5 contains contaminating amounts of tightly bound detergent which is responsible for the observed inhibition of mixed function oxidase activity and which is removed during extraction of the heme from the apocytochrome and during further gel filtration applications.  相似文献   

19.
The synthesis of cytochrome b in yeast depends on the expression of both mitochondrial and nuclear gene products that act at the level of processing of the pre-mRNA, translation of the mRNA, and maturation of the apoprotein during its assembly with the nuclear-encoded subunits of coenzyme QH2-cytochrome c reductase. Previous studies indicated one of the nuclear genes (CBP2) to code for a protein that is needed for the excision of the terminal intervening sequence from the pre-mRNA. We show here that the intervening sequence can promote its own excision in the presence of high concentrations of magnesium ion (50 mM), but that at physiological concentrations of the divalent cation (5 mM), the splicing reaction requires the presence of the CBP2-encoded product. These results provide strong evidence for a direct participation of the protein in splicing, most likely in stabilizing a splicing competent structure in the RNA. The conversion of apocytochrome b to the functional cytochrome has been examined in mutants lacking one or multiple structural subunits of the coenzyme QH2-cytochrome c reductase complex. Based on the phenotypes of the different mutants studied, the following have been concluded. (i) The assembly of catalytically active enzyme requires the synthesis of all except the 17 kDa subunit. (ii) Membrane insertion of the individual subunits is not contingent on protein-protein interactions. (iii) Assembly of the subunits occurs in the lipid bilayer following their insertion. (iv) The attachment of haem to apocytochrome b is a late event in assembly after an intermediate complex of the structural subunits has been formed. This complex minimally is composed of apocytochrome b, the non haem iron protein and all the non-catalytic subunits except for the 17 kDa core 3 subunit.  相似文献   

20.
C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号