首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of cell biology》1996,134(5):1141-1156
Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH- terminal domains. When full-length human Nup153 is expressed in BHK cells, it accumulates appropriately at the nucleoplasmic face of the nuclear envelope. Targeting information for Nup153 resides in the NH2- terminal domain since this region of the molecule can direct an ordinarily cytoplasmic protein, pyruvate kinase, to the nuclear face of the nuclear pore complex. Overexpression of Nup153 results in the dramatic accumulation of nuclear poly (A)+ RNA, suggesting an inhibition of RNA export from the nucleus. This is not due to a general decline in nucleocytoplasmic transport or to occlusion or loss of nuclear pore complexes since nuclear protein import is unaffected. While overexpression of certain Nup153 constructs was found to result in the formation of unusual intranuclear membrane arrays, this structural phenotype could not be correlated with the effects on poly (A)+ RNA distribution. The RNA trafficking defect was, however, dependent upon the Nup153 COOH-terminal domain which contains most of the XFXFG repeats. It is proposed that this region of Nup153, lying within the distal ring of the nuclear basket, represents a docking site for mRNA molecules exiting the nucleus.  相似文献   

2.
3.
4.
5.
Pre-mRNA processing and mRNA nuclear export   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
8.
9.
10.
11.
Mex67, the homolog of human TAP, is not an essential mRNA export factor in Schizosaccharomyces pombe. Here we show that S. pombe encodes a homolog of the TAP cofactor that we have also named p15, whose function in mRNA export is not essential. We have identified and characterized two distinct nuclear export activities, nuclear export signal (NES) I and NES II, within the region of amino acids 434-509 of Mex67. These residues map within the known NTF2-like fold of TAP (amino acids 371-551). We show that the homologs of these two NESs are present and are functionally conserved in TAP. The NES I, NES II, and NES I + II of TAP and Mex67 directly bind with -phenylalanine-glycine (-FG)-containing sequences of S. pombe Nup159 and Nup98 but not with human p62. Mutants of NES I or NES II of Mex67/TAP that do not bind -FG Nup159 and Nup98 in vitro are unable to mediate nuclear export of a heterologous protein in S. pombe and in HeLa cells. Fused with the RNA recognition motifs (RRMs) of Crp79 and green fluorescent protein (GFP) (RRM-NES-GFP), the NES I and NES II of Mex67 or TAP can suppress the mRNA export defect of the Deltap15 rae1-167 synthetic lethal S. pombe strain, suggesting that the NESs can function in the absence of p15. These novel nuclear export sequences may provide additional routes for delivering Mex67/TAP to the nuclear pore complex.  相似文献   

12.
13.
Pre-mRNAs associate in the nucleus with specific RNA-binding proteins to form heterogeneous nuclear ribonucleoprotein (hnRNP) complexes. The hnRNP proteins participate directly or indirectly in the processing of pre-mRNAs into mature mRNAs. Recent studies have shown that some hnRNP proteins shuttle continuously between the nucleus and the cytoplasm. The export of shuttling hnRNP proteins from the nucleus is mediated by specific nuclear export sequences (NESs) within the proteins. In addition, shuttling hnRNP proteins appear to remain bound to exported mRNAs in transit through nuclear pores. As discussed in this review, the picture that is emerging is that nuclear export of mRNAs is mediated by the export of NES-containing hnRNP proteins to which they are bound.  相似文献   

14.
The Ran protein regulates nucleocytoplasmic transport mediated by the karyopherin family of nuclear transport factors. Ran is converted to the active, GTP bound form in the nucleus and then binds to a conserved domain found in all karyopherins. This interaction induces cargo binding for exportins and cargo release for importins. In either case, the Ran.GTP is then transported to the cytoplasm by the karyopherin, where it is hydrolyzed to Ran.GDP. To ask whether Ran could function as a nuclear mRNA export factor, we fused Ran to the MS2 coat protein and inserted MS2 RNA-binding sites into an unspliced cat mRNA that is normally sequestered in the nucleus. Coexpression of MS2-Ran induced cat mRNA export and CAT enzyme expression as effectively as, for example, an MS2-Rev fusion protein. MS2-Ran dependent nuclear mRNA export was reduced by inhibitors specific for Crm1, but not blocked as was seen with MS2-Rev. Consistent with the hypothesis that Crm1 is not the only karyopherin cofactor for MS2-Ran mediated mRNA export, we show that not only Crm1 but also CAS, transportin, importin beta and exportin t can all export mRNA from the nucleus when tethered via the MS2 RNA-binding domain. In contrast, two shuttling hnRNPs, hnRNP A1 and hnRNP K, proved unable to function as nuclear RNA export factors when expressed as MS2 fusions. Together, these data argue that karyopherins that normally function to transport proteins into or out of the nucleus are also capable of exporting tethered mRNA molecules.  相似文献   

15.
16.
Bacterial flagella, unlike eukaryotic flagella, are largely external to the cell and therefore many of their subunits have to be exported. Export is ATP-driven. In Salmonella, the bacterium on which this chapter largely focuses, the apparatus responsible for flagellar protein export consists of six membrane components, three soluble components and several substrate-specific chaperones. Other flagellated eubacteria have similar systems. The membrane components of the export apparatus are housed within the flagellar basal body and deliver their substrates into a channel or lumen in the nascent structure from which point they diffuse to the far end and assemble. Both on the basis of sequence similarities of several components and structural similarities, the flagellar protein export systems clearly belong to the type III superfamily, whose other members are responsible for secretion of virulence factors by many species of pathogenic bacteria.  相似文献   

17.
Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA-ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.  相似文献   

18.
Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directly to the C-terminal part of Zds1p. In addition, ZDS1 interacted genetically with mutant alleles of genes encoding key factors in mRNA export, including DBP5 and MEX67. Furthermore, deletion of ZDS1 or of both ZDS1 and the closely related ZDS2 exacerbated the poly(A)+ export defects shown by dbp5-2 and mex67-5 mutants. We proposed that Zds1p associates with the complex formed by Dbp5p, Gfd1p, and nucleoporins at the cytosolic fibrils of the nuclear pore complex and is required for optimal mRNA export.  相似文献   

19.
The nuclear pore complex (NPC) is both the major conduit for nucleocytoplasmic trafficking and a platform for organizing macromolecules at the nuclear envelope. We report that yeast Esc1, a non-NPC nuclear envelope protein, is required both for proper assembly of the nuclear basket, a structure extending into the nucleus from the NPC, and for normal NPC localization of the Ulp1 SUMO protease. In esc1Delta cells, Ulp1 and nuclear basket components Nup60 and Mlp1 no longer distribute broadly around the nuclear periphery, but co-localize in a small number of dense-staining perinuclear foci. Loss of Esc1 (or Nup60) alters SUMO conjugate accumulation and enhances ulp1 mutant defects. Similar to previous findings with Mlp1, both Esc1 and Ulp1 help retain unspliced pre-mRNAs in the nucleus. Therefore, these proteins are essential for proper nuclear basket function, which includes mRNA surveillance and regulation of SUMO protein dynamics. The results raise the possibility that NPC-localized protein desumoylation may be a key regulatory event preventing inappropriate pre-mRNA export.  相似文献   

20.
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号