首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We have previously presented evidence for the formation of 1-O-alkyl dihydroxyacetone-P from acyl dihydroxyacetone-P via the initial formation of an intermediate 1-O-acyl endiol of acyl dihydroxyacetone-P. This reaction involves a stereospecific exchange of the pro-R hydrogen of the acyl dihydroxyacetone-P moiety without change in configuration. The fatty acid is replaced by a long chain fatty alcohol which retains the oxygen of the primary carbinol. In the absence of fatty alcohol, water substitutes and the product is dihydroxyacetone-P which has also exchanged the pro-R hydrogen with a hydrogen from the medium. An absolute requirement of the proposed mechanism is that the loss of the fatty acid must proceed via an unusual cleavage of the dihydroxyacetone-P C-1 to oxygen bond instead of the usual cleavage at the fatty acid acyl to oxygen bond. In the present investigation, we have synthesized hexadecanoyl dihydroxyacetone-P containing oxygen-18 exclusively at the dihydroxyacetone-P C-1 oxygen. Using this substrate, we have shown that cleavage of hexadecanoyl dihydroxyacetone-P at the C-1 to oxygen bond is linked to O-alkyl dihydroxyacetone-P synthesis. Inhibition of O-alkyl lipid synthesis by means of magnesium or NADPH inhibited the unusual cleavage. At the same time, we have shown that there was hydrolysis of acyl dihydroxyacetone-P which proceeded by the usual mechanism and which was not related to synthesis of O-alkyl dihydroxyacetone-P.  相似文献   

2.
We have previously provided evidence for a mechanism by which acyl DHAP is converted enzymatically to O-alkyl DHAP. This mechanism involves, in part, the formation of an endiol of acyl DHAP, loss of the fatty acid by splitting of the DHAP carbon-1 to oxygen bond and the gain of a long chain fatty alcohol. It has been shown that acyl DHAP can exchange its fatty acid for one in the medium, presumably by the mediation of O-alkyl DHAP synthase. In the present investigation we have shown that the fatty acid which is gained by acyl DHAP in the exchange process retains both carboxyl oxygens, as predicted by our postulated mechanism. This reaction is exceptional because the usual action of acyl hydrolases is to cleave at the oxygen to acyl bond.  相似文献   

3.
Alkyldihydroxyacetone-P (alkyl-DHAP) synthase catalyzes the exchange of the fatty acid esterified to C-1 of the DHAP portion of acyl-DHAP for a fatty alcohol to form 1-O-alkyl-DHAP, the first ether-linked intermediate in ether lipid biosynthesis. Another characteristic of the reaction is the exchange of the pro-R hydrogen at C-1. We have investigated this hydrogen exchange using palmitoyl-[1-R-3H]DHAP and a 1000-fold purified preparation of alkyl-DHAP synthase. We found a small but significant pro-R hydrogen exchange in the absence of the co-substrate, fatty alcohol. When [14C]hexadecanol was added, the increase in pro-R 3H exchange was equal to the [14C]hexadecyl-DHAP formed. Addition of [14C]palmitic acid resulted in an increase in pro-R 3H exchange that matched the formation of [14C]palmitoyl-DHAP by the acyl exchange activity of alkyl-DHAP synthase. Furthermore, although whole microsomes contain at least two acyl hydrolases for acyl-DHAP, purified preparations of alkyl-DHAP synthase do not form DHAP from acyl-DHAP. These results are discussed with respect to data obtained from other laboratories using whole microsomes and in support of our proposed ping-pong mechanism for alkyl-DHAP synthase.  相似文献   

4.
The stereochemical course of the formation of the alkyl ether bond in alkyl ether lipids was investigated through the synthesis of stereospecifically labeled acyl R- or S-[1-3H]dihydroxyacetone 3-phosphate (DHAP) starting from L-glyceraldehyde. It was demonstrated directly that the formation of the alkyl ether bond results in the stereospecific exchange of the pro-R C-1 hydrogen of DHAP with a proton of water. The configuration of the hydrogen that is retained on C-1 after formation of the alkyl ether bond was also investigated. The alkyl ether lipid was degraded, and the DHAP backbone isolated as glycerol, converted to DHAP via glycerol 3-phosphate and treated with either aldolase or triose phosphate isomerase. The results demonstrated that the retained hydrogen on C-1, which was pro-S in the starting substrate, was pro-S in the product alkyl ether.  相似文献   

5.
In this study, we report novel and simple chemical syntheses of acyl dihydroxyacetone phosphate (DHAP) and 1-acyl glycero-3-phosphate [lysophosphatidic acid (LPA)], key intermediaries in the formation of glycerolipids containing ester and ether bonds. The synthesis of acyl DHAPs involved acylating the dimethyl ketal of DHAP by acid anhydride using 4-pyrrolidinopyridine as the catalyst, and the resulting product was deketalized by HClO(4) in acetone to produce acyl DHAP. The acid anhydride was either added directly or generated in the reaction mixture from the corresponding fatty acid using dicyclohexylcarbodiimide as the condensing agent. Using these methods, a number of acyl DHAPs having short-, medium-, and long-chain saturated and unsaturated acyl groups were synthesized, with overall yields from 37% to 75%. The activities of these acyl DHAPs as substrates for guinea pig liver peroxisomal acyl DHAP:NADPH reductase and alkyl DHAP synthase were then determined. Next, starting from these acyl DHAPs, a variety of LPAs were synthesized by chemical reduction of the ketone group. Biological activities of these LPAs were determined by measuring their relative abilities to release intracellular Ca(2+) via the LPA receptor. A combined chemical-enzymatic method is also described to prepare the natural LPA from the racemic mixture.  相似文献   

6.
Upon differential centrifugation, the enzyme acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42) in guinea pig liver is shown to sediment in a lysosomal-peroxisomal fraction. Comparison of the distribution of the marker enzymes and of DHAP acyl transferase indicates that the acyl transferase is localized in peroxisomes (microbodies).  相似文献   

7.
The acyl group of acyl dihydroxyacetone phosphate was shown to be enzymatically transferred in guinea pig liver mitochondria to various acceptors such as lysolecithin, lysophosphatidyl ethanolamine and sn-glycerol-3-phosphate to form lecithin, phosphatidyl ethanolamine and phosphatidate, respectively. Coenzyme A and Mg++, but not ATP, were required for this reaction. A rapid exchange of acyl group between acyl dihydroxyacetone phosphate and dihydroxyacetone phosphate was also observed.  相似文献   

8.
Methylglyoxal synthase (MGS) and triosephosphate isomerase (TIM) share neither sequence nor structural similarities, yet the reactions catalyzed by both enzymes are similar, in that both initially convert dihydroxyacetone phosphate to a cis-enediolic intermediate. This enediolic intermediate is formed from the abstraction of the pro-S C3 proton of DHAP by Asp-71 of MGS or the pro-R C3 proton of DHAP by Glu-165 of TIM. MGS then catalyzes the elimination of phosphate from this enediolic intermediate to form the enol of methylglyoxal, while TIM catalyzes proton donation to C2 to form D-glyceraldehyde phosphate. A competitive inhibitor of TIM, phosphoglycolohydroxamic acid (PGH) is found to be a tight binding competitive inhibitor of MGS with a K(i) of 39 nM. PGH's high affinity for MGS may be due in part to a short, strong hydrogen bond (SSHB) from the NOH of PGH to the carboxylate of Asp-71. Evidence for this SSHB is found in X-ray, 1H NMR, and fractionation factor data. The X-ray structure of the MGS homohexamer complexed with PGH at 2.0 A resolution shows this distance to be 2.30-2.37 +/- 0.24 A. 1H NMR shows a PGH-dependent 18.1 ppm signal that is consistent with a hydrogen bond length of 2.49 +/- 0.02 A. The D/H fractionation factor (phi = 0.43 +/- 0.02) is consistent with a hydrogen bond length of 2.53 +/- 0.01 A. Further, 15N NMR suggests a significant partial positive charge on the nitrogen atom of bound PGH, which could strengthen hydrogen bond donation to Asp-71. Both His-98 and His-19 are uncharged in the MGS-PGH complex on the basis of the chemical shifts of their Cdelta and C(epsilon) protons. The crystal structure reveals that Asp-71, on the re face of PGH, and His-19, on the si face of PGH, both approach the NO group of the analogue, while His-98, in the plane of PGH, approaches the carbonyl oxygen of the analogue. The phosphate group of PGH accepts nine hydrogen bonds from seven residues and is tilted out of the imidate plane of PGH toward the re face. Asp-71 and phosphate are thus positioned to function as the base and leaving group, respectively, in a concerted suprafacial 1,4-elimination of phosphate from the enediolic intermediate in the second step of the MGS reaction. Combined, these data suggest that Asp-71 is the one base that initially abstracts the C3 pro-S proton from DHAP and subsequently the 3-OH proton from the enediolic intermediate. This mechanism is compared to an alternative TIM-like mechanism for MGS, and the relative merits of both mechanisms are discussed.  相似文献   

9.
The hydrolysis of cGMP by phosphodiesterase was conducted in [18O]water to determine the site of bond cleavage and the stoichiometry of 18O incorporation into 5'-GMP. Three different forms of phosphodiesterase including a calmodulin-calcium-dependent enzyme in its basal and activated states were examined. The hydrolysis of cGMP catalyzed by each of the forms of phosphodiesterase proceeded with incorporation of 1 18O atom recoverable in the phosphate moiety of each molecule of 5'-GMP generated. No molecular species of phosphate deriving from the 5'-GMP generated containing two or three 18O were detectable. These results indicate that the phosphodiesterase-catalyzed hydrolysis of cGMP proceeds by nucleophilic substitution at phosphorus resulting in P-O bond cleavage. The stoichiometry of 18O incorporation indicates that the reaction proceeds without phosphate-water oxygen exchange when the hydrolytic reaction is catalyzed by diverse forms of phosphodiesterase in the basal or activated state. These considerations of the phosphodiesterase reaction help to establish the validity of monitoring the rate of enzyme-catalyzed hydrolysis of cGMP as a function of the rate of 18O-labeling of the phosphate of 5'-GMP when the reaction proceeds in a medium of predetermined 18O enrichment.  相似文献   

10.
The presence of the acyl dihydroxyacetone phosphate (acyl DHAP) pathway in yeasts was investigated by examining three key enzyme activities of this pathway in Saccharomyces cerevisiae. In the total membrane fraction of S. cerevisiae, we confirmed the presence of both DHAP acyltransferase (DHAPAT; Km = 1.27 mM; Vmax = 5.9 nmol/min/mg of protein) and sn-glycerol 3-phosphate acyltransferase (GPAT; Km = 0.28 mM; Vmax = 12.6 nmol/min/mg of protein). The properties of these two acyltransferases are similar with respect to thermal stability and optimum temperature of activity but differ with respect to pH optimum (6.5 for GPAT and 7.4 for DHAPAT) and sensitivity toward the sulfhydryl blocking agent N-ethylmaleimide. Total membrane fraction of S. cerevisiae also exhibited acyl/alkyl DHAP reductase (EC 1.1.1.101) activity, which has not been reported previously. The reductase has a Vmax of 3.8 nmol/min/mg of protein for the reduction of hexadecyl DHAP (Km = 15 microM) by NADPH (Km = 20 microM). Both acyl DHAP and alkyl DHAP acted as substrates. NADPH was the specific cofactor. Divalent cations and N-ethylmaleimide inhibited the enzymatic reaction. Reductase activity in the total membrane fraction from aerobically grown yeast cells was twice that from anaerobically grown cells. Similarly, DHAPAT and GPAT activities were also greater in aerobically grown yeast cells. The presence of these enzymes, together with the absence of both ether glycerolipids and the ether lipid-synthesizing enzyme (alkyl DHAP synthase) in S. cerevisiae, indicates that non-ether glycerolipids are synthesized in this organism via the acyl DHAP pathway.  相似文献   

11.
Amino acid sequence homologies between H1 and H5 histones   总被引:6,自引:0,他引:6  
Ehrlich ascites cell microsomes catalyze the exchange of the acyl group of acyl dihydroxyacetone phosphate with free fatty acids. The reaction does not require ATP and CoA.  相似文献   

12.
Abstract— The enzymes for the biosynthesis of phosphatidic acid from acyl dihydroxyacetone phosphate were shown to be present in rat brain. These enzymes were mainly localized in the microsomal fraction of 12–14 day old rat brains. The brain microsomal acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42), exhibited a broad pH optimum between pH 5 and 9 with maximum activity at pH 5.4. K m for DHAP at pH 5.4 was 0.1 m m and V max was 0.86nmol/min/mg of microsomal protein. The corresponding microsomal enzyme for the glycerophosphate pathway (acyl CoA: sn -glycerol-3-phosphate acyl transferase EC 2.3.1.15) was shown to have a different pH optimum (pH 7.6). On the basis of the differences in pH optima, differential effects of sodium cholate in the enzymes and a common substrate competition study, these acyl transferases were postulated to be two different microsomal enzymes.
Acyl DHAP:NADPH oxidoreductase (EC 1.1.1.101) in brain microsomes was found to be quite specific for NADPH as cofactor, being able to utilize NADH only at very high concentrations. This enzyme exhibited a K m of 8.6 μ m with NADPH and V mx of 0.81 nmol/min/mg protein. The presence of these two enzymes and the known presence of l-acyl- sn -glycerol-3-phosphate: acyl CoA acyl transferase in brain (F leming & H ajra , 1977) demonstrated the biosynthesis of phosphatidic acid in brain via acyl dihydroxyacetone phosphate. Phosphatidic acid was shown to form when dihydroxyacetone phosphate, acyl CoA, NADPH and other cofactors were incubated together with brain microsomes. Further properties of the enzymes and the probable importance of the presence of this pathway in brain were discussed.  相似文献   

13.
UDP-glucose dehydrogenase catalyzes the incorporation of tritium into UDP-glucose (UDPG) in the presence of UDP-α-D-gluco-hexodialdose (UDP-Glc-6-CHO) and [B-3H]-NADH. The 3H is located exclusively at C-6 of the glucose moiety of UDPG and at least 79% of it is in the pro-R position. It is concluded that UDPG dehydrogenase catalyzes the abstraction of the pro-R hydrogen at C-6 of the glucose moiety of the substrate as the first step in the conversion of UDPG to UDP-glucuronic acid. The apparent lack of complete stereospecificity has been shown to result from a hitherto undetected reversible redox reaction prior to the release of UDP-glucuronic acid by the enzyme.  相似文献   

14.
H M Miziorko  C E Behnke  F Ahmad 《Biochemistry》1989,28(14):5759-5764
Incubation of 3-chloropropionyl-CoA with 3-hydroxy-3-methylglutaryl-CoA synthase results in exchange of the C2 proton with solvent as inactivation of enzyme proceeds. This enzyme is also inhibited by S-acrylyl-N-acetylcysteamine; the limiting rate constant for inactivation by the acrylyl derivative (0.36 min-1) slightly exceeds the value measured for chloropropionyl-CoA (0.31 min-1). These observations support the intermediacy of acrylyl-CoA in the chloropropionyl-CoA-dependent inactivation of hydroxymethylglutaryl-CoA synthase. Inhibition of fatty acid synthase by chloropropionyl-CoA is primarily due to alkylation of a reactive cysteine, although secondary reaction with the enzyme's pantetheinyl sulfhydryl occurs. Modification of fatty acid synthase by S-acrylyl-N-acetylcysteamine occurs at a limiting rate (1.8 min-1) that is comparable to that estimated for chloropropionyl-CoA-dependent inactivation. However, this enzyme lacks the ability to deprotonate C2 of an acyl group such as the chloropropionyl moiety. Since such a step would be required to generate an acrylyl group from chloropropionyl-S-enzyme, it is likely that a typical affinity labeling process accounts for inactivation of fatty acid synthase by chloropropionyl-CoA. HMG-CoA lyase is also inhibited by S-acrylyl-N-acetylcysteamine. In contrast to the ability of this reagent to serve as a mechanism-based inhibitor of hydroxymethylglutaryl-CoA synthase and an affinity label of fatty acid synthase, it acts as a group-specific reagent in modifying HMG-CoA lyase (kappa 2 = 86.7 M-1 min-1).  相似文献   

15.
Chemical investigation of the glandular trichome exudate from Silene gallica L. (Caryophyllaceae) resulted in isolation of 10 cyclic fatty acyl glycosides (gallicasides A–J). The cyclic structures were characterized by a glycosidic linkage of the glucose moiety to either the C-12 or the C-13 position of the octadecanoyl moiety, and by an ester linkage between the C-2 hydroxy group of the glucose moiety and the carboxyl group of the oxygenated octadecanoic acid. The structures of the cyclic fatty acyl glycosides were further distinguished from one another by acetylation and/or malonylation on the glucose moiety. Of these compounds, the 1,2′-cyclic ester of 12(R)-(6-O-acetyl-3-O-malonyl-β-d-glucopyranosyloxy)octadecanoic acid (gallicaside J) was the most abundant (30.7%). These secondary metabolites were found specifically in the glandular trichome exudate rather than in other aerial parts.  相似文献   

16.
Reduction of fatty acids having one to four double bonds per molecule to the corresponding alcohols, and the utilization of such alcohols for alkyl dihydroxyacetone phosphate (alkyl DHAP) synthesis was measured with microsomal preparations from 19-day-old rat brain. While alkyl DHAP formation proceeded well with octadecenol, octadecadienol, octadecatrienol and eicosatetraenol, fatty acids with more than one cis-double bond were not readily reduced to the corresponding alcohols.  相似文献   

17.
Rates of phosphatidate synthesis from dihydroxyacetone phosphate via acyl dihydroxyacetone phosphate or glycerol phosphate are compared in homogenates of 13 tissues, most of which are deficient in glycerol phosphate dehydrogenase (EC 1.1.1.8). In all tissues examined, dihydroxyacetone phosphate entered phosphatidate more rapidly via acyl dihydroxyacetone phosphate than via glycerol phosphate. Tissues with a relatively low rate of phosphatidate synthesis via glycerol phosphate, showed no compensating increase in the rate of synthesis via acyl dihydroxyacetone phosphate. The rates at which tissue homogenates synthesize phosphatidate from dihydroxyacetone phosphate via glycerol phosphate increase as glycerol phosphate dehydrongenase increase. Both glycerol phosphate dehydrogenase and glycerol phosphate: acyl CoA acyltransferase (EC 2.3.1.15) are more active than dihydroxyacetone phosphate : acyl CoA acyltransferase (EC 2.3.1.42). Thus, all the tissue homogenates possessed an apparently greater capability to synthesize phosphatidate via glycerol phosphate than via acyl dihydroxyacetone phosphate, but did not express this potential. This result is discussed in relation to in vivo substrate limitations.  相似文献   

18.
The product distributions for the reactions of dihydroxyacetone phosphate (DHAP) in D(2)O at pD 7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy using glyceraldehyde 3-phosphate dehydrogenase to trap the first-formed products of the thermodynamically unfavorable isomerization reaction, (R)-glyceraldehyde 3-phosphate (GAP) and [2(R)-(2)H]-GAP (d-GAP). Three products were observed from the reactions catalyzed by TIM: GAP from isomerization with intramolecular transfer of hydrogen (18% of the enzymatic products), d-GAP from isomerization with incorporation of deuterium from D(2)O into C-2 of GAP (43% of the enzymatic products), and [1(R)-(2)H]-DHAP (d-DHAP) from incorporation of deuterium from D(2)O into C-1 of DHAP (40% of the enzymatic products). The ratios of the yields of the deuterium-labeled products d-DHAP and d-GAP from partitioning of the intermediate of the TIM-catalyzed reactions of GAP and DHAP in D(2)O are 1.48 and 0.93, respectively. This provides evidence that the reaction of these two substrates does not proceed through a single, common, reaction intermediate but, rather, through distinct intermediates that differ in the bonding and arrangement of catalytic residues at the enediolate O-1 and O-2 oxyanions formed on deprotonation of GAP and DHAP, respectively.  相似文献   

19.
Haruki M  Tsunaka Y  Morikawa M  Iwai S  Kanaya S 《Biochemistry》2000,39(45):13939-13944
To investigate the role of the phosphate group 3' to the scissile phosphodiester bond of the substrate in the catalytic mechanism of Escherichia coli ribonuclease HI (RNase HI), we have used modified RNA-DNA hybrid substrates carrying a phosphorothioate substitution at this position or lacking this phosphate group for the cleavage reaction. Kinetic parameters of the H124A mutant enzyme, in which His(124) was substituted with Ala, as well as those of the wild-type RNase HI, were determined. Substitution of the pro-R(p)-oxygen of the phosphate group 3' to the scissile phosphodiester bond of the substrate with sulfur reduced the k(cat) value of the wild-type RNase HI by 6.9-fold and that of the H124A mutant enzyme by only 1. 9-fold. In contrast, substitution of the pro-S(p)-oxygen of the phosphate group at this position with sulfur had little effect on the k(cat) value of the wild-type and H124A mutant enzymes. The results obtained for the substrate lacking this phosphate group were consistent with those obtained for the substrates with the phosphorothioate substitutions. In addition, a severalfold increase in the K(m) value was observed by the substitution of the pro-R(p)-oxygen of the substrate with sulfur or by the substitution of His(124) of the enzyme with Ala, suggesting that a hydrogen bond is formed between the pro-R(p)-oxygen and His(124). These results allow us to propose that the pro-R(p)-oxygen contributes to orient His(124) to the best position for the catalytic function through the formation of a hydrogen bond.  相似文献   

20.
On subcellular fractionation, the enzyme acyl/alkyl dihydroxyacetone phosphate (DHAP) reductase (EC 1.1.1.101) in guinea pig and rat liver was found to be present in both the light mitochondrial (L) and microsomal fractions. By using metrizamide density gradient centrifugation, it was shown that the alkyl DHAP reductase activity in the "L" fraction is localized mainly in peroxisomes. From the distribution of the marker enzymes it was calculated that about two-thirds of the liver reductase activity is in the peroxisomes and the rest in the microsomes. The properties of this enzyme in peroxisomes and microsomes are similar with respect to heat inactivation, pH optima, sensitivity to trypsin, and inhibition by NADP+ and acyl CoA. The enzyme activity in the peroxisomes and microsomes from mouse liver is increased to the same extent by chronically feeding the animals clofibrate, a hypolipidemic drug. The kinetic properties of this enzyme in these two different organelles are also similar. From these results it is concluded that the same enzyme is present in two different subcellular compartments of liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号