首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood-borne lymphocytes extravasate in large numbers within peripheral lymph nodes (PN) and other secondary lymphoid organs. It has been proposed that the initiation of extravasation is based upon a family of cell adhesion molecules (homing receptors) that mediate lymphocyte attachment to specialized high endothelial venules (HEV) within the lymphoid tissues. A putative homing receptor has been identified by the monoclonal antibody, MEL-14, which recognizes an 80-90-kD glycoprotein on the surface of mouse lymphocytes and blocks the attachment of lymphocytes to PN HEV. In a companion study we characterize a carbohydrate-binding receptor on the surface of mouse lymphocytes that also appears to be involved in the interaction of lymphocytes with PN HEV. This receptor selectively binds to fluorescent beads derivatized with PPME, a polysaccharide rich in mannose-6-phosphate. In this report we examine the relationship between this carbohydrate-binding receptor and the putative homing receptor identified by the MEL-14 antibody. We found that: MEL-14 completely and selectively blocks the activity of the carbohydrate-binding receptor on mouse lymphocytes; the ability of six lymphoma cell lines to bind PPME beads correlates with cell-surface expression of the MEL-14 antigen, as well as PN HEV-binding activity; selection of lymphoma cell line variants for PPME-bead binding by fluorescence-activated cell sorting (FACS) produces highly correlated (r = 0.974, P less than 0.001) and selective changes in MEL-14 antigen expression. These results show that the carbohydrate-binding receptor on lymphocytes and the MEL-14 antigen, which have been independently implicated as receptors involved in PN-specific HEV attachment, are very closely related, if not identical, molecules.  相似文献   

2.
The molecular mechanisms by which pertussis toxin (PTX) inhibits lymphocyte homing to peripheral lymph nodes (PLN) remain poorly understood. PTX-treated lymphocytes express homing receptors, yet cannot extravasate into PLN in vivo. Methylation of PTX, a procedure known to inactivate the B-oligomer of the toxin, restored high endothelial venule (HEV) binding capacity. In vitro studies established that toxin exposure inhibited the accessory role of LFA-1 in HEV binding. In contrast, PTX-exposed lymphocytes exhibited normal MEL-14-mediated HEV binding. Analysis of membrane fluidity revealed a 20% decrease in fluorescence polarization in PTX-exposed lymphocytes. On the basis of the current experiments, we propose a "zipper" model of lymphocyte-HEV interaction, in which lateral mobility of adhesion receptors in the cell membrane toward a site of endothelial contact is necessary to maintain adhesion against the shear force due to blood flow. PTX inhibits these processes by decreasing membrane fluidity, and by altering accessory adhesion molecule function.  相似文献   

3.
The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.  相似文献   

4.
Lymphocyte migration from the blood into most secondary lymphoid organs is initiated by a highly selective adhesive interaction with the endothelium of specialized blood vessels known as high endothelial venules (HEV). The propensity of lymphocytes to migrate to particular lymphoid organs is known as lymphocyte homing, and the receptors on lymphocytes that dictate interactions with HEV at particular anatomical sites are designated "homing receptors". Based upon antibody blockade experiments and cell-type distribution studies, a prominent candidate for the peripheral lymph node homing receptor in mouse is the approximately 90-kD cell surface glycoprotein (gp90MEL) recognized by the monoclonal antibody MEL-14. Previous work, including sequencing of a cDNA encoding for this molecule, supports the possibility that gp90MEL is a calcium-dependent lectin-like receptor. Here, we show that immunoaffinity-purified gp90MEL interacts in a sugar-inhibitable manner with sites on peripheral lymph node HEV and prevents attachment of lymphocytes. Lymphocyte attachment to HEV in Peyer's patches, a gut-associated lymphoid organ, is not affected by gp90MEL. The results demonstrate that gp90MEL, as a lectin-like receptor, directly bridges lymphocytes to the endothelium.  相似文献   

5.
The tissue-specific homing of lymphocytes is directed by specialized high endothelial venules (HEV). At least three functionally independent lymphocyte/HEV recognition systems exist, controlling the extravasation of circulating lymphocytes into peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches or appendix), and the synovium of inflamed joints. We report here that antibodies capable of inhibiting human lymphocyte binding to one or more HEV types recognize a common 85-95-kD lymphocyte surface glycoprotein antigen, defined by the non-blocking monoclonal antibody, Hermes-1. We demonstrate that MEL-14, a monoclonal antibody against putative lymph node "homing receptors" in the mouse, functionally inhibits human lymphocyte binding to lymph node HEV but not to mucosal or synovial HEV, and cross-reacts with the 85-95-kD Hermes-1 antigen. Furthermore, we show that Hermes-3, a novel antibody produced by immunization with Hermes-1 antigen isolated from a mucosal HEV-specific cell line, selectively blocks lymphocyte binding to mucosal HEV. Such tissue specificity of inhibition suggests that MEL-14 and Hermes-3 block the function of specific lymphocyte recognition elements for lymph node and mucosal HEV, respectively. Recognition of synovial HEV also involves the 85-95-kD Hermes-1 antigen, in that a polyclonal antiserum produced against the isolated antigen blocks all three classes of lymphocyte-HEV interaction. From these studies, it is likely that the Hermes-1-defined 85-95-kD glycoprotein class either comprises a family of related but functionally independent receptors for HEV, or associates both physically and functionally with such receptors. The findings imply that related molecular mechanisms are involved in several functionally independent cell-cell recognition events that direct lymphocyte traffic.  相似文献   

6.
Down-regulation of homing receptors after T cell activation   总被引:32,自引:0,他引:32  
The specific pattern of lymphocyte localization and recirculation is important for the induction and expression of normal immune responses. In order to home to lymph nodes (LN), lymphocytes must first recognize and bind to specific high endothelial venules (HEV) in the LN. Binding to LN HEV is mediated by specific lymphocyte receptors, termed homing receptors, which are recognized by the mAb MEL-14. We examined the changes that occur in homing receptor expression after activation of murine T lymphocytes in vitro. Cells activated in MLC or by Con A undergo a 75% loss in their ability to recognize HEV, as demonstrated by a decrease in binding to HEV in vitro. Large, activated cells isolated from a primary MLC by elutriator centrifugation were completely unable to recognize HEV, whereas the small cells in the same culture continued to bind well. Flow cytometric analysis with MEL-14 showed that the activated fraction had lost expression of gp90MEL-14, the homing receptor Ag, whereas the inactivated cells remained MEL-14+. Concomitant with the loss of homing receptor expression, most of the activated cells became strongly peanut agglutinin (PNA)-positive, demonstrating a marked change in surface glycosylation. Thus, these MLC consist of two major populations of T cells--small, inactivated lymphocytes that are MEL-14+PNAlo and large, activated blast cells that are MEL-14-PNAhi. Purified MEL-14+ T cells activated by Con A gave rise to MEL-14- progeny, showing that gp90MEL-14 is lost from gp90MEL-14-positive precursors, rather than from the selective growth of MEL-14- cells. Furthermore, the loss of Ag expression on at least some activated cells is reversible in resting culture, with almost half of the cells reverting to MEL-14+ after the cessation of stimulation. These experiments show that activation of T cells results in down-regulation of surface homing receptors, resulting in their inability to recognize and bind to the endothelial surface of HEV. This suggests that the activation of T cells in vivo would result in a dramatic and physiologically significant change in their migration and localization properties which would be important during a normal immune response.  相似文献   

7.
The interaction of leukocytes with endothelial cells is intrinsic to the process of leukocyte extravasation, whether during the entry of blood polymorphonuclear leukocytes and monocytes into sites of acute and chronic inflammation, or during the homing of lymphocytes to lymphoid organs. A lymphocyte surface glycoprotein, defined by monoclonal antibody MEL-14, has been described that appears to mediate lymphocyte recognition of postcapillary venules in peripheral lymph nodes, and to control the migration of lymphocytes from the blood into these lymphoid organs. We now report that the antigenic determinant recognized by MEL-14 is present at high levels on other leukocytes as well, including neutrophils, monocytes, and eosinophils; and we demonstrate involvement of the MEL-14 antigen in neutrophil-endothelial cell interactions. MEL-14 immunoprecipitates a neutrophil surface protein of Mr approximately 100,000, similar in m.w. to the 80,000 to 90,000 dalton lymphocyte surface MEL-14 antigen, and it blocks the interaction of neutrophils with endothelial cells in an in vitro model of adhesion to postcapillary venules in lymph node frozen sections. Neutrophil binding to lymph node venules is also inhibited by PPME, a mannose-6-phosphate-rich yeast polysaccharide that is thought to mimic the endothelial cell ligand for the MEL-14-defined lymphocyte receptor. Interestingly, neither MEL-14 nor PPME exhibit a major effect on neutrophil binding to postcapillary venules in Peyer's patches, suggesting that as for lymphocytes, the neutrophil MEL-14 antigen is involved in recognition of tissue-specific endothelial determinants. Finally, we show that MEL-14 inhibits the capacity of neutrophils to migrate from the blood into sites of acute inflammation in the skin. These observations lead us to propose that receptors for tissue-specific endothelial determinants are utilized by neutrophils and lymphocytes and probably other leukocytes during the physiologic process of leukocyte extravasation in vivo.  相似文献   

8.
S A Weston  C R Parish 《Cytometry》1992,13(7):739-749
Previous studies have identified unique cell surface antigens which are associated with the specific binding of lymphocytes to high endothelial venules (HEV). Evidence is presented in this paper which demonstrates that uptake of the fluorescent dye calcein by lymphocytes represents an additional marker for the lymph node homing subpopulation of lymphocytes. Calcein exhibits a characteristic ability to label lymphocytes differentially into two distinct populations, based on fluorescence intensity, that does not occur with three other structurally related, fluorescein-based dyes. In vivo lymphocyte migration studies revealed that cells displaying the "dull" fluorescence phenotype, although entering all lymphoid organs examined, preferentially homed to the lymph nodes, particularly the popliteal lymph node (PLN). By contrast, lymphocytes displaying the "bright" phenotype were essentially excluded from entering lymphoid organs, where entry is HEV dependent, but were observed entering spleen, where entry is HEV independent. Furthermore, a high proportion (76.5%) of lymphocytes displaying the dull fluorescence phenotype expressed the PLN homing receptor MEL-14. Based on these observations it is suggested that calcein uptake may be a marker for general membrane properties, such as fluidity and plasticity, essential for the passage of lymphocytes through HEV.  相似文献   

9.
Cloning of a lymphocyte homing receptor reveals a lectin domain   总被引:72,自引:0,他引:72  
Lymphocytes express cell surface molecules, termed homing receptors, that mediate their selective attachment to specialized high endothelial venules found within secondary lymphoid organs. Previous work has demonstrated that the adhesive interaction between lymphocytes and the endothelium of peripheral lymph nodes appears to involve a lectin-like activity. Moreover, MEL-14, a monoclonal antibody that blocks lymphocyte-peripheral lymph node binding and presumably recognizes the homing receptor mediating this adhesive interaction, appeared to detect the lectin-like receptor. In this paper we describe the cloning of a murine cDNA that encodes the antigen recognized by the MEL-14 antibody. Characterization of the cDNA encoding the putative mouse peripheral lymph node-specific homing receptor shows that it contains a lectin domain that appears to be involved in the binding of lymphocytes to peripheral lymph node endothelium, thus defining a new type of cellular adhesion molecule. This result supports a novel mechanism for the distribution of lymphocyte populations to various lymphoid organs.  相似文献   

10.
The effects of IL-2 on the expression of homing receptors by lymphocytes of NK or lymphokine activated killer (LAK) cell derivation has not yet been evaluated. We developed a murine model to evaluate the potential of LAK cells to localize into peripheral lymph nodes since LAK cells are used to treat human cancers which have metastasized to these tissues. Using a frozen section binding assay, LAK cell adhesion to the lymph node microvasculature was easily demonstrable. Inhibition studies demonstrated that LAK cell binding to lymph nodes was mediated by mechanisms previously described in T cells. LAK cell surface expression of the 85- to 95-kDa homing receptor recognized by the antibody MEL-14 on LAK cells was assessed by indirect immunofluorescence. The percentage of cells which bound MEL-14 decreased slightly over 3 days of IL-2 exposure (from 73 to 60%), particularly in the large granular lymphocyte (cytotoxic effector) subpopulation (45% MEL-14+). The expression of another homing-related molecule, leukocyte function-associated Ag-1, markedly increased during activation of LAK cells. Despite the expression of these homing receptors, we observed almost no LAK cell localization into lymph nodes in vivo. Furthermore, IL-2 pretreatment of recipient animals did not increase the adhesion of LAK cells to lymph node microvasculature or enhance their extravasation. IL-2 activation of non-T, non-B lymphocytes results in significant changes in both the expression and function of cell surface homing receptors. Our results indicate that in vitro analysis does not always predict in vivo localization potential.  相似文献   

11.
《The Journal of cell biology》1990,111(6):2757-2764
The entry of blood-borne lymphocytes into most secondary lymphoid organs is initiated by a highly specific adhesive interaction with the specialized cuboidal endothelial cells of high endothelial venules (HEV). The adhesive receptors on lymphocytes that dictate interactions with HEV in different lymphoid organs are called homing receptors, signifying their critical role in controlling organ-selective lymphocyte migration. Considerable work has established that the mouse peripheral lymph node homing receptor (pnHR), defined by the mAb MEL- 14, functions as a lectin-like adhesive protein. We have previously shown that sialidase treatment of peripheral lymph node (PN) HEV abrogates lymphocyte attachment to the HEV both in vivo and in vitro. We extend this evidence by demonstrating that Limax agglutinin (LA), a sialic acid-specific lectin, when reacted with HEV exposed in cryostat- cut tissue sections, blocks lymphocyte attachment to PN HEV and, unexpectedly, to the HEV of Peyer's patches (PP) as well. Using a recombinant form of the pnHR as a histochemical probe for its cognate adhesive site (HEV-ligand) on PN HEV, we demonstrate that both sialidase and Limax agglutinin functionally inactive this ligand. It is concluded that the requirement for sialic acid is at the level of the pnHR interaction with its HEV ligand. A distinct sialyloligosaccharide may encode the recognition determinant of a PP HEV ligand.  相似文献   

12.
During the course of their recirculation through the body, blood-borne lymphocytes specifically adhere to high endothelial venules (HEV) within secondary lymphoid organs such as peripheral lymph nodes (PN) and gut-associated Peyer's patches (PP). This adherence event, which initiates the extravasation of the lymphocyte, is highly specific in terms of the class of lymphocyte and the anatomic location of the HEV. We review evidence that the lymphocyte adhesive molecule (homing receptor) involved in attachment to PN HEV is a carbohydrate-binding receptor (lectin-like) with specificity for mannose-6-phosphate (M6P)-like ligands. We describe the use of a novel cytochemical probe for the detection and characterization of cell surface carbohydrate-binding receptors. Using a M6P-based probe, we show that the carbohydrate-binding receptor on lymphocytes is closely-related or identical to the MEL-14 antigen, a putative homing receptor identified by a monoclonal antibody. Evidence is presented that the lymphocyte attachment sites on both PN and PP HEV are inactivated by mild periodate oxidation and hence are probably carbohydrate in nature. Yet, the sites are biochemically distinguishable in that one class (PN) requires sialidase-sensitive structures whereas the other (PP) does not. We raise the possibility that diversity in the carbohydrate-based recognition determinants on HEV may underlie the adhesive specificities in this system.  相似文献   

13.
Lymphocyte attachment to high endothelial venules within lymph nodes is mediated by the peripheral lymph node homing receptor (pnHR), originally defined on mouse lymphocytes by the MEL-14 mAb. The pnHR is a calcium-dependent lectin-like receptor, a member of the LEC-CAM family of adhesion proteins. Here, using a soluble recombinant form of the homing receptor, we have identified an endothelial ligand for the pnHR as an approximately 50-kD sulfated, fucosylated, and sialylated glycoprotein, which we designate Sgp50 (sulfated glycoprotein of 50 kD). Recombinant receptor binding to this lymph node-specific glycoprotein requires calcium and is inhibitable by specific carbohydrates and by MEL-14 mAb. Sialylation of the component is required for binding. Additionally, the glycoprotein is precipitated by MECA-79, an adhesion-blocking mAb reactive with lymph node HEV. A related glycoprotein of approximately 90 kD (designated as Sgp90) is also identified.  相似文献   

14.
Antibody blocking studies in the mouse suggest that the MEL-14 antigen is involved in neutrophil-endothelial cell interactions and may be important in neutrophil extravasation to sites of inflammation in vivo. We recently showed that chemotactic factor activation causes a rapid (within minutes) shedding of a large fragment of the MEL-14 antigen from the surface of neutrophils. We report here that chymotrypsin, at low doses (0.1 units/1 x 10(6) cells), but not trypsin, elastase, or collagenase, causes an activation-independent rapid loss (greater than 90%) of the MEL-14 antigen from the surface of murine neutrophils. Under the same treatment conditions chymotrypsin has no effect on the expression of four other neutrophil surface antigens, including the Mac-1 adhesion protein. Chymotrypsin treatment has no effect on neutrophil adhesion to plastic, migration to C5a, regulation of the Mac-1 antigen, but causes a greater than 95% reduction in neutrophil binding to high endothelial venules (HEV) in peripheral lymph nodes measured in the ex vivo frozen section HEV binding assay. The level of inhibition of neutrophil adhesion to HEV was comparable to that seen with the MEL-14 antibody. This experimental system allows us for the first time to specifically examine the consequences of removing the MEL-14 antigen from the surface of neutrophils on function in vivo. We show that treatment with chymotrypsin blocks greater than 85% of the ability of neutrophils injected back into the animal to home to the inflamed peritoneum. In similar in vivo experiments the MEL-14 antibody blocks neutrophil homing by 60-70%. These results further support the importance of the MEL-14 antigen in neutrophil extravasation in vivo and indicate that chymotrypsin could be useful in examining the molecular mechanisms involved in extravasation of leukocytes into a variety of diverse tissue sites of inflammation.  相似文献   

15.
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.  相似文献   

16.
Lymphocyte entry into lymph nodes and Peyer's patches is initiated by the adhesion of the lymphocytes to specialized postcapillary high endothelial venules (HEV). The binding of lymphocytes to lymph node HEV is mediated by the cell surface receptor gp90MEL-14 (gp90). Previous work has shown that gp90 is down-regulated over a period of days after mitogenic or mixed lymphocyte reaction stimulation of T lymphocytes. In our study, it is shown that stimulation of lymphocytes with activators of protein kinase C (PKC), such as PMA or 1-oleoyl 2-acetyl-glycerol, results in the nearly complete loss of surface expression of gp90 within 1 h. Pretreatment of the cells with H-7 or staurosporine, PKC inhibitors, but not HA1004, a general protein kinase inhibitor, prevents the loss of gp90MEL-14. Within 15 min of stimulation of PKC, a novel form of gp90 can be immunoprecipitated from the supernatant of stimulated cells. Upon deglycosylation, this soluble gp90 polypeptide is shown to be 12 kDa smaller than the cell surface protein. Peptide mapping showed identical patterns for surface and soluble receptor, confirming that the soluble Ag is related to the cell membrane protein. Together, these experiments suggest that activation of PKC results in the proteolytic cleavage of gp90MEL-14, resulting in receptor shedding and the inability of the lymphocytes to adhere to HEV endothelium. Furthermore, because supernatant from unstimulated, normal lymphocytes also contains a small amount of the low Mr form of gp90, cell surface proteolysis may be part of the normal turnover of this receptor glycoprotein. These experiments suggest that PKC may play a role in the regulation of lymphocyte traffic to lymphoid tissues.  相似文献   

17.
The CD11/18 (LFA-1, Mac-1) molecules participate in neutrophil adhesion to cultured endothelium in vitro and are critical for effective neutrophil localization into inflamed tissues in vivo. More recently, the MEL-14 Ag, which was first defined as a lymphocyte homing receptor, has also been implicated in inflammatory neutrophil extravasation. Here we compare the regulation and function of these adhesion molecules on neutrophils during the in vivo inflammatory response. The MEL-14 Ag is expressed at high levels on bone marrow and peripheral blood neutrophils, but is lost on neutrophils isolated from the thioglycollate-inflamed peritoneal cavity. In contrast, Mac-1 is up-regulated on inflammatory neutrophils and little change is seen in the level of LFA-1 expression. In vitro activation of bone marrow neutrophils with PMA or leukotriene B4 results in a dose dependent increase in Mac-1 and decrease in MEL-14 Ag expression within 1 h after treatment, thus reflecting what is found during inflammation in vivo. Neutrophils activated in vitro or in vivo (MEL-14Low, Mac-1Hi) do not home to inflammatory sites in vivo, correlating with the loss of the MEL-14 Ag and the increased Mac-1 expression. Anti-LFA-1, anti-Mac-1, or MEL-14 antibody given i.v. suppress neutrophil accumulation within the inflamed peritoneum (38%, 30%, and 37% of medium control, respectively) without affecting the levels of circulating neutrophils. However, when FITC-labeled cells are precoated with the mAb and injected i.v., only MEL-14 inhibits extravasation into the inflamed peritoneum (25% of medium control). Finally, in ex vivo adhesion assays of neutrophil binding to high endothelial venules in inflamed-lymph node frozen sections MEL-14 inhibits greater than 90%. anti-LFA-1 20 to 30% and anti-Mac-1 less than 10% of the binding of bone marrow neutrophils to inflamed-lymph node high endothelial venules. These results confirm that both the MEL-14 antigen and Mac-1/LFA-1 are important in neutrophil localization to inflamed sites in vivo, but suggest that their roles in endothelial cell interactions are distinct.  相似文献   

18.
Tissue-specific interactions with specialized high endothelial venules (HEV) direct the homing of lymphocytes from the blood into peripheral lymph nodes, mucosal lymphoid organs, and tissue sites of chronic inflammation. These interactions have been demonstrated in all mammalian species examined and thus appear highly conserved. To assess the degree of evolutionary divergence in lymphocyte-HEV recognition mechanisms, we have studied the ability of lymphocytes to interact with HEV across species barriers. By using an in vitro assay of lymphocyte binding to HEV in frozen sections of lymphoid tissues, we confirm that mouse, guinea pig, and human lymphocytes bind to xenogeneic as well as homologous HEV. In addition, we show that mouse and human lymphoid cell lines that bind selectively to either peripheral lymph node or mucosal vessels (Peyer's patches, appendix) in homologous lymphoid tissues exhibit the same organ specificity in binding to xenogeneic HEV. Furthermore, monoclonal antibodies that recognize lymphocyte "homing receptors" and block homologous lymphocyte binding to peripheral lymph node or to mucosal HEV, also inhibit lymphocyte interactions with xenogeneic HEV in a tissue-specific fashion. Similarly, anti-HEV antibodies against organ-specific mouse high endothelial cell "addressins" involved in lymphocyte homing to peripheral lymph node or mucosal lymphoid organs, not only block the adhesion of mouse lymphocytes but also of human lymphocytes to target mouse HEV. The results illustrate a remarkable degree of functional conservation of elements mediating these cell-cell recognition events involved in organ-specific lymphocyte homing.  相似文献   

19.
Lymphoid tumors display a wide variety of growth patterns in vivo, from that of a solitary extralymphoid tumor, to a general involvement of all lymphoid organs. Normal lymphocytes are uniquely mobile cells continuously recirculating between blood and lymph throughout much of their life cycle. Therefore, it is reasonable to propose that disseminating malignant lymphocytes may express recirculation characteristics or homing properties consistent with that of their normal lymphoid counterparts. Trafficking of lymphocytes involves the expression and recognition of both lymphocyte homing receptors and their opposing receptors on endothelium, the vascular addressins. These cell surface elements direct the tissue-selective localization of lymphocyte subsets in vivo into organized lymphoid organs and sites of chronic inflammation where specific binding events occur between lymphocytes and the endothelium of specialized high endothelial venules (HEV). In a recent murine study of 13 lymphoma lines, we found that lymphomas that bind well to high endothelial venules, in the Stamper-Woodruff in vitro assay (an assay of lymphocyte binding to venules in frozen sections of peripheral lymph nodes or Peyer's patches), spread hematogenously to all high endothelial venule bearing lymphoid organs, whereas non-binding lymphomas did not. In some cases lymphomas that bound with a high degree of selectivity to peripheral lymph node (PLN) high endothelial venules exhibited only limited organ preference of metastasis, involving the mucosal lymphoid organs Peyer's patches (PP) in addition to the peripheral lymph nodes of adoptive recipients. Here we demonstrate that Peyer's patch high endothelial venules express a low but functional level of peripheral lymph node addressin (MECA-79) that can be recognized by lymphomas expressing the peripheral lymph node homing receptor (MEL-14 antigen).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号