首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S ummary . The recovery of Bacillus subtilis spores was studied after different heat treatments at 95° and incubation at different temperatures in roll tubes in a gradient temperature incubator. Plate count agar and brain–heart infusion agar were used in the roll tubes. Unheated spores showed similar recoveries at 16–48° whereas heated spores had an optimum recovery temperature of c. 30.9. The rate of germination of untreated spores was greatest at c. 41° and ceased at 50°. Heated spores germinated at 52°5°, suggesting that recovery of heat-treated spores is not limited by their ability to germinate. Outgrowth of spores at different incubation temperatures was similar for germinated and ungerminated spores. Accordingly it is outgrowth rather than germination which is sensitive to temperature.  相似文献   

2.
Impedimetric methods for evaluating post-pasteurization contamination and shelf-life of cream were assessed. Over 94% of the samples tested were in agreement, using selected cut-offs of 20 h for detection time measured at 21°C with creams containing inhibitors for the growth of Gram positive bacteria on standard plate count agar as growth media, and 3.2 × 107 cfu/g for plate counts obtained on cream which had been pre-incubated in the presence of inhibitors for the growth of Gram positive organisms, and on cream stored at 6°C for 7 d. Agreement between the impedimetric method and plate count was not as good if either Brain Heart Infusion or Milk Agar was used in place of Plate Count Agar in the former technique. A poor correlation was obtained between plate count methods for enumerating post-pasteurization contamination and keeping quality with impedimetric measurements on cream alone. It was possible, with a reasonable degree of certainty, to determine if cream had suffered post-pasteurization contamination within 20 h of production.  相似文献   

3.
A comparative study of methods to enumerate sulphite-reducing Clostridium spores and Group D faecal streptococci in oysters demonstrated that pour plate solid agar techniques gave higher counts than liquid broth most probable number procedures. Reinforced clostridial broth with supplements to detect sulphite reduction was compared with pour plates of egg yolk-free tryptose sulphite cycloserine agar incubated at 37°C for 24 h. Azide dextrose broth was compared with pour plates using Slanetz and Bartley (SB) agar or KF-streptococcus agar at 37°C. Most probable number procedures used for both groups of organisms gave excessive numbers of improbable tube combinations. For enumeration of Group D faecal streptococci, a pour plate technique using SB agar incubated at 37°C for 48 h is recommended.  相似文献   

4.
A statistical evaluation of viable count procedures utilized for obtaining treatment survival curve data for Bacillus subtilis NCTC 8236 spores is described. Within the various recovery conditions tested, incubation on nutrient agar containing 1% dextrose for 48 hr at 37 C was found to promote the highest count of viable spores surviving a variety of bactericidal treatments involving gamma irradiation, heat, and chlorocresol. The count of viable spores on the medium was not significantly altered when the dextrose was added to the nutrient agar either before autoclaving or aseptically at 50 to 55 C from a solution sterilized by filtration. The volume of medium which promoted the highest count of viable spores was 20 ml per 85 mm of diameter in disposable plastic plates. Counts of viable spores were reproducible on successive batches of media. The carry-over of variable concentrations of chlorocresol into the medium from serial dilutions affected the count of viable spores. Spores in the aqueous stock suspension used for all experiments were uniformly distributed after shaking and did not diminish significantly in viability after 16 months of storage at 5 C. Grouping of indexes of dispersion, calculated from quintuplicate plate colony counts, indicated that the suitability of the viable count procedures, employed for the enumeration of spores surviving the various bactericidal treatments, tended to diminish as the level of spore inactivation exceeded 95%.  相似文献   

5.
Millipore total-count samplers intended for monitoring process water were compared with the traditional pour plate technique. Counts obtained with the pour plate method were significantly higher ( P < 0.01) after 5 d incubation at both 20°C and 37°C. It is concluded that Millipore total-count samplers cannot be relied upon to give a true estimate of the total viable count from a process water system.  相似文献   

6.
Injury and repair in biocide-treated spores of Bacillus subtilis   总被引:3,自引:0,他引:3  
Abstract Bacillus subtilis NCTC 8236 spores exposed to appropriate concentrations of test biocides (glutaraldehyde, two iodine and two chlorine preparations) were able to repair injury if subsequently held in nutrient broth at 37°C but not in broth at 22°C, sterile filtered water at 4, 22 or 37°C or germination medium at 37°C. Repair appeared to occur primarily during outgrowth and was initiated soonest for iodine-treated spores and latest for glutaraldehyde-treated ones.  相似文献   

7.
Spores of Bacillus subtilis SA22 harvested after 22 d incubation on nutrient agar at 30°C were more resistant to 0–04% peracetic acid at 20°C than spores harvested following 2 d incubation. Similarly, spores of B. subtilis globigii B17, harvested after 7 d incubation on a sporulation agar were up to 10 times less resistant to 0.04% peracetic acid at 20°C than spores harvested after 35 d incubation. An increase in resistance to heating at 100°C and to exposure to 17.7% hydrogen peroxide at 20°C occurred as the age of B. subtilis SA22 spores prior to harvesting increased, whereas differences in resistance were not observed with spores of B. subtilis globigii B17.  相似文献   

8.
Refrigerated processed foods of extended durability rely on a mild heat treatment combined with refrigerated storage to ensure microbiological safety and quality. The principal microbiological safety risk in foods of this type is non-proteolytic Clostridium botulinum. In this article the combined effect of mild heat treatment and refrigerated storage on the time to growth and probability of growth from spores of non-proteolytic Cl. botulinum is described. Spores of non-proteolytic Cl. botulinum (two strains each of type B, E and F) were heated at 90°C for between 0 and 60 min and subsequently incubated at 5°, 10° or 30°C in PYGS broth in the presence or absence of lysozyme. The number of spores that resulted in turbidity depended on the combination of heat treatment, incubation time and incubation temperature they received. Heating at 90°C for 1 or more min ensured a 106 reduction when spores were subsequently incubated at 5°C for up to 23 weeks. Heating at 90°C for 60 min ensured a 106 reduction over 23 weeks when subsequent incubation was at 10°C in the presence of added lysozyme. The same treatment did not reduce the spore population by 106 when subsequent incubation was at 30°C.  相似文献   

9.
Spores of psychrotrophic (able to grow at 5°C) aerobic sporeformers occurred in soil in high numbers (2 × 103-5 × 106/g), whereas psychrophilic (able to grow at 0°C) spores were present at significantly lower levels (500–105/g). Psychrotrophic spores were absent in herbs and spices: in pasteurized meals prepared industrially their numbers varied from <10 to 1000/g. For spores harvested from Trypticase Soy Agar (TSA), the heat resistance of the cold-tolerant sporeformers was low with D 90°C-values from 1–11 min. The recovery of heated psychrophilic spores on this medium at 5°C was equal to their recovery at 20°C. However, the recovery of heated psychrotrophic spores was lower at 5°C than at 20°C, whereas unheated spores gave the same counts at both temperatures. The heat resistance of naturally occurring spores of cold-tolerant sporeformers washed from soil was comparable with the resistance of spores formed on TSA.  相似文献   

10.
Spores of Clostridium sporogenes were found to be resistant to ultra high pressure, with treatments of 600 MPa for 30 min at 20 °C causing no significant inactivation. Combination treatments including heat and pressure applied simultaneously (e.g. 400 MPa at 60 °C for 30 min) or sequentially (e.g. 80 °C for 10 min followed by 400 MPa for 30 min) proved more effective at inactivating spores. Pressure cycling (e.g. 60 MPa followed by 400 MPa at 60 °C) also reduced spore numbers. Overall, these pressure treatments resulted in less than a 3 log reduction, and it was concluded that the spores could not be inactivated by pressure alone. This could indicate that for the effective inactivation of bacterial spores, high pressure technology may have to be used in combination with other preservation methods.  相似文献   

11.
Weekly estimates of numbers of Pseudocercosporella herpotrichoides conidia on naturally infected wheat straw, made from February to July 1982, showed there were most conidia (8.1 × 106 per straw) in February and least (1.9 × 104 per straw) at the end of June. The viability of these spores remained high throughout this period, with an average of 85 % germination after 24 h.
After removal of spores produced in the field, straws were incubated at 5, 10, 15, 20 or 25°C and subsequent sporulation assessed after 3 or 5 weeks. The optimum temperature for spore production was 5°C and very few spores were produced at 25°C. There was no difference in viability between spores produced at different temperatures.
Wheat seedlings placed amongst infected straw collected and retained spores on the upper and lower surfaces of all leaf blades and on outer leaf sheaths. Both naturally dispersed spores and spores sprayed on to plants were not removed by subsequent rainfall.
When wheat seedlings were inoculated between the coleoptile and outer leaf sheath with different numbers of P. herpotrichoides spores, lesion development was most rapid in seedlings inoculated with the greatest numbers of spores. However, after incubation for 12 weeks visible lesions were present on all plants inoculated with > c. 10 spores.  相似文献   

12.
A rapid method for the determination of bacterial fatty acid composition   总被引:10,自引:1,他引:9  
Heat treatment of spores of non-proteolytic strains of Clostridium botulinum at 75–90°C, and enumeration of survivors on a nutrient medium containing lysozyme gave biphasic survival curves. A majority of spores were inactivated rapidly by heating, and the apparent heat-resistance of these spores was similar to that observed by enumeration on medium without lysozyme. A minority of spores showed much greater heat-resistance, due to the fact that the spore coat was permeable to lysozyme, which diffused into the spore from the medium and replaced the heat-inactivated germination system. The proportion of heated spores permeable to lysozyme was between 0.2 and 1.4% for spores of strains 17B (type B) and Beluga (type E), but was about 20% for spores of strain Foster B96 (type E). After treatment of heated spores with alkaline thioglycolate, all were permeable to lysozyme. D-values for heated spores that were permeable to lysozyme (naturally and after treatment with thioglycolate) were: for strain 17B, D85°C, 100 min; D90°C, 18.7 min; D95°C, 4.4 min; for strain Beluga, D85°C, 46 min; D90°C, 11.8 min; D95°C, 2.8 min. The z-values for these spores of strains 17B and Beluga were 7.6°C and 8.3°C.  相似文献   

13.
A study was conducted to quantify the ability of entrapped, monoxenically produced spores of an arbuscular mycorrhizal fungus to germinate and reproduce the fungal life cycle after cryopreservation. No germination was obtained after incubation of entrapped spores in glycerol and mannitol and subsequent cryopreservation at −70 °C, regardless of the concentration of cryoprotectants and duration of incubation. Incubation for 1 d in 0.5 M sucrose, and for 1 and 2 d in 0.5 M trehalose, led to spore germination after cryopreservation at −70 °C. Lower cryopreservation temperatures were tested with entrapped spores incubated for 1 d in 0.5 M trehalose. The highest germination rate, estimated by the percentage of potentially infective beads (%PIB), was obtained at −100 °C. A %PIB of 95% (water agar medium) to 100% (Strullu–Romand medium) was obtained at this temperature. Thereafter, %PIB rapidly decreased at −140 and −180 °C. Heavy sporulation and high internal root colonization were obtained after re-association of the entrapped spores, incubated for 1 d in 0.5 M trehalose and subsequently cryopreserved at −100 °C, with transformed carrot roots. This demonstrates the ability of entrapped spores to reproduce the fungal life cycle following cold treatment.  相似文献   

14.
Bacillus stearothermophilus spores were heated in a mixture of mushroom puree with alginate, in the temperature range 110–130°C. Both Arrhenius and the traditional Bigelow models were used to describe the dependence of the constant inactivation rate ( K ) or ( D ) with the temperature. Results showed that both are very good linear regression models, but a discrepancy between 20 and 45% was found in the constant inactivation rate predicted by both models at high temperatures (125–140°C). Despite this discrepancy, the Arrhenius model was a better predictor of the inactivation rate constants at temperatures of 125 and 130°C for B. stearothermophilus spores heated in an alginate-mushroom mixture.  相似文献   

15.
The surface or coat-associated properties of Bacillus cereus T spores produced from modified G medium (MGM) and fortified nutrient agar (FNA) were compared. The two populations appeared structurally similar by transmission electron microscopy. Spores prepared on FNA were more susceptible to ozone inactivation than MGM-prepared spores. When activated by heating for 15 min at 70–85°C, FNA-prepared spores were optimally activated at 85°C and did not become hydrophilic on heat activation while MGM spores were optimally activated at 70°C and became hydrophilic on activation. Susceptibility to removal of coat and outer membrane by chemical and enzymatic extraction treatments was measured by monitoring reduced ability to germinate in nutrients and acquired ability to germinate in the presence of lysozyme. Bacillus cereus T MGM-prepared spores germinated in lysozyme upon<1 h exposure to sodium dodecyl sulphate-dithiothreitol. FNA-prepared spores were lysozyme sensitive after > 2 h treatment. Thus, B. cereus T FNA spore coats and outer membranes were more resistant to these denaturing agents. Transmission electron micrographs revealed no change in appearance of extracted spores. Sporulation environment must be considered when laboratory-prepared spores are used to assess or predict the effect of control procedures on spores present in nature.  相似文献   

16.
The Behaviour of a Food Poisoning Strain of Clostridium welchii in Beef   总被引:5,自引:5,他引:0  
S ummary : An inoculum of 105 spores of Clostridium welchii F2985/50 in meat survived steaming at 100° for 5 h, the number being reduced sevenfold for every hour of steaming. They also survived for at least 6 months in frozen meat stored at -5° and -20°, whereas vegetative cells died more rapidly at -5° than at -20°. In beef stored for 13 days at 1°, 5°, 10° and 15° there was no multiplication but a slow destruction of vegetative cells, but there was little change in the spore count. Slow multiplication occurred at 20° but at 25° and 37° growth was rapid. Only about 3% of the spores germinated without prior heat shock, so the majority failed to germinate in raw meat stored at any temperature, but did so once the meat had been heated. In meat which had been heated and allowed to cool almost all of the spores had lost their heat resistance.
It was found that the minimal growth temperature was related to pH and medium, so that meat with a pH higher than that used in these experiments (pH 5°7–5°8) would probably have a lower minimal growth temperature for these organisms and would thus be more susceptible to spoilage.  相似文献   

17.
Spores of Bacillus stearothermophilus were exposed to calcium and sodium salts of dipicolinic acid (DPA) in phosphate and Tris acid maleate buffers over the range pH 4.5–10.0. The exposed spores were enumerated using a standard plate counting technique from which the kinetics of colony formation were determined and maximum colony counts were obtained for each condition examined. Exposure of the spores to calcium-DPA (50-40 mmol/l) in Tris acid maleate buffer pH 9.0 maintained at 10°C was found to produce an optimal response. Following this method the total viable population of a spore suspension was enumerated. This was demonstrated statistically using the Wilcoxon rank-sum test for significance. Calcium-DPA was found to produce activation in spores but further germinants and nutrients were required for colony formation. The Ca-DPA treatment was found to be effective in enumerating both naturally dormant spores and heat injured spores.  相似文献   

18.
The Effect of Freezing on the Radiation Sensitivity of Bacterial Spores   总被引:1,自引:1,他引:0  
S ummary : Bacillus pumilus spores, irradiated under aerobic conditions, were inactivated exponentially at the same rate whether they were at room temperature (10–13°) in phosphate buffer or at -79° in phosphate buffer or in heart infusion broth.
Clostridium welchii spores were irradiated in Robertson's cooked meat medium under anaerobic conditions. With unheated spores, and those subjected to a heat shock before irradiation, the inactivation rate was the same at room temperature and -79°. The same applied to spores heat shocked after irradiation for doses up to 450 Krads, but above this dose level the spores irradiated frozen were more sensitive.
The effect of the heat shock, whether applied before or after irradiation, was to increase the number of survivors, and the proportionate increase appeared to vary with dose.  相似文献   

19.
Freshly cooked luncheon meat in a plastic (PVDC) casing had an aerobic plate count of about 102/g. The flora was composed of approximately equal numbers of Bacillus and Micrococcus spp. Storage at 10°C for 42 d produced little increase in bacterial numbers, or changes in pH value or glucose content at either the surface or core of the luncheon meat. Storage at 25°C allowed Bacillus spp. to proliferate at the surface. The inhibitory effect of salt and nitrite on the growth of heated Bacillus spores at low redox potentials probably accounts for the absence of growth within the product. Growth at the surface was accompanied by a fall in pH (6.8 to 6.2) and an increase in glucose (1.6 to 3.6 mg/g) and L(+)-lactic acid (1.2 to 2.3 mg/g). By day 14 the Bacillus spp. had been displaced by a Streptococcus sp. (107/g) which remained the dominant organism until the experiment ended on day 28. The pH continued to fall from 5.7 on day 14 to 5.2 on day 28, the L(+)-lactic acid rose to 6.1 mg/g, but the glucose remained constant at the day 7 level (3.6 mg/g). This indicates that glucose converted to lactic acid was largely replaced by hydrolysis of the starch portion of the luncheon meat mediated by amylases produced by the Bacillus microflora. It appears that growth of the Streptococcus is dependent upon the denitrifying activities of the initial Bacillus flora reducing the concentration of nitrite ion to non-inhibitory levels.  相似文献   

20.
The influence of sporulation temperature (20, 30 and 37 °C) on the heat resistance and initiation of germination and inactivation by high pressure on Bacillus cereus ATCC 14579 spores was investigated. Spores sporulated at 37 °C were the most heat-resistant. However, spores sporulated at 20 °C were more resistant to the initiation of germination and inactivation by high pressure. Spores were more sensitive to pressure at higher treatment temperatures. At 25 °C, there was an optimum pressure (250 MPa) for the initiation of germination for the three suspensions; at higher temperatures an increase of pressure up to 690 MPa caused progressively more germination. Resistance to the germinability and inactivation by high pressure of the spore population was distributed heterogeneously. Semilogarithmic curves of the ungerminated and survival fraction of B. cereus spores were concave. The resistant fraction of the spore population was lower at higher treatment temperatures. At 60 °C after 30 s of treatment at 690 MPa almost 5 log cycles of the population of B. cereus sporulated at 20 °C was germinated, and more than 7 log cycles of the population of B. cereus sporulated at 30 and 37 °C. The same treatment inactivated 4, 6 and 7 log cycles of the population of B. cereus sporulated at 20, 30 and 37 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号