首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pKa values of enzyme groups of Escherichia coli glutamine synthetase which affect catalysis and/or substrate binding were determined by measuring the pH dependence of Vmax and V/K. Analysis of these data revealed that two enzyme groups are required for catalysis with apparent pKa values of approximately 7.1 and 8.2. The binding of ATP is essentially independent of pH in the range studied while the substrate ammonia must be deprotonated for the catalytic reaction. Using methylamine and hydroxylamine in place of ammonia, the pKa value of the deprotonated amine substrate as expressed in the V/K profiles was shifted to a lower pKa value for hydroxylamine and a higher pKa value for methylamine. These data indicate that the amine substrate must be deprotonated for binding. Hydroxylamine is at least as good a substrate as ammonia judged by the kinetic parameters whereas methylamine is a poor substrate as expressed in both the V and V/K values. Glutamate binding was determined by monitoring fluorescence changes of the enzyme and the data indicate that a protonated residue (pKa = 8.3 +/- 0.2) is required for glutamate binding. Chemical modification by reductive methylation with HCHO indicated that the group involved in glutamate binding most likely is a lysine residue. In addition, the Ki value for the transition state analog, L-3-amino-3-carboxy-propanesulfonamide was measured as a function of pH and the results indicate that an enzyme residue must be protonated (pKa = 8.2 +/- 0.1) to assist in binding. A mechanism for the reaction catalyzed by glutamine synthetase is proposed from the kinetic data acquired herein. A salt bridge is formed between the gamma-phosphate group of ATP and an enzyme group prior to attack by the gamma-carboxyl of glutamate on ATP to form gamma-glutamyl phosphate. The amine substrate subsequently attacks gamma-glutamyl phosphate resulting in formation of the tetrahedral adduct before phosphate release. A base on the enzyme assists in the deprotonation of ammonia during its attack on gamma-glutamyl phosphate or after the protonated carbinol amine is formed. Based on the kinetic data with the three amine substrates, catalysis is not rate-limiting through the pH range 6-9.  相似文献   

2.
We have used crystallography and thermodynamic analysis to study nuclease variants I92E and I92K, in which an ionizable side-chain is placed in the hydrophobic core of nuclease. We find that the energetic cost of burying ionizable groups is rather modest. The X-ray determinations show water molecules solvating the buried glutamic acid under cryo conditions, but not at room temperature. The lysine side-chain does not appear solvated in either case. Guanidine hydrochloride (GnHCl) denaturation of I92E and I92K, done as a function of pH and monitored by tryptophan fluorescence, showed that I92E and I92K are folded in the pH range pH 3.5-9.0 and pH 5.5-9.5, respectively. The stability of the parental protein is independent of pH over a broad range. In contrast, the stabilities of I92E and I92K exhibit a pH dependence, which is quantitatively explained by thermodynamic analysis: the PK(a) value of the buried K92 is 5.6, while that of the buried E92 is 8.65. The free energy difference between burying the uncharged and charged forms of the groups is modest, about 6 kcal/mol. We also found that epsilon(app) for I92K and I92E is in the range approximately 10-12, instead of 2-4 commonly used to represent the protein interior. Side-chains 92E and 92K were uncharged under the conditions of the X-ray experiment. Both are buried completely inside the well-defined hydrophobic core of the variant proteins without forming salt-bridges or hydrogen bonds to other functional groups of the proteins. Under cryo conditions 92E shows a chain of four water molecules, which hydrate one oxygen atom of the carboxyl group of the glutamic acid. Two other water molecules, which are present in the wild-type at all temperatures, are also connected to the water ring observed inside the hydrophobic core. The ready burial of water with an uncharged E92 raises the possibility that solvent excursions into the interior also take place in the wild-type protein, but in a random, dynamic way not detectable by crystallography. Such transient excursions could increase the average polarity, and thus epsilon(app), of the protein interior.  相似文献   

3.
The chemical and kinetic mechanisms of the reaction catalyzed by the catalytic trimer of aspartate transcarbamoylase have been examined. The variation of the kinetic parameters with pH indicated that at least four ionizing amino acid residues are involved in substrate binding and catalysis. The pH dependence of K(ia) for carbamoyl phosphate and the K(i) for N-(phosphonoacetyl)-L- aspartate revealed that a protonated residue with a pK value of 9.0 is required for the binding of carbamoyl phosphate. However, the variation with pH of K(i) for succinate, a competitive inhibitor of aspartate, and for cysteine sulfinate, a slow substrate, showed that a single residue with a pK value of 7.3 must be protonated for binding these analogues and, by inference, aspartate. The profile of log V against pH displayed a decrease in reaction rate at low and high pH, suggesting that two groups associated with the Michaelis complex, a deprotonated residue with a pK value of 7.2 and a protonated group with a pK value of 9.5, are involved in catalysis. By contrast, the catalytically productive form of the enzyme-carbamoyl phosphate complex, as illustrated in the bell-shaped pH dependence of log (V/K)(asp), is one in which a residue with a pK value of 7.0 must be protonated while a group with a pK value of 9.1 is deprotonated. This interpretation is supported by the results from the temperature dependence of the V and V/K profiles and from the pH dependence of pK(i) for the aspartate analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Urea and guanidine-hydrochloride (GdnHCl) are frequently used for protein denaturation in order to determine the Gibbs free energy of folding and kinetic folding/unfolding parameters. Constant pH value is applied in the folding/unfolding experiments at different denaturant concentrations and steady protonation state of titratable groups is assumed in the folded and unfolded protein, respectively. The apparent side-chain pKa values of Asp, Glu, His and Lys in the absence and presence of 6 M urea and GdnHCl, respectively, have been determined by 1H-NMR. pKa values of all four residues are up-shifted by 0.3-0.5 pH units in presence of 6 M urea by comparison with pKa values of the residues dissolved in water. In the presence of 6 M GdnHCl, pKa values are down-shifted by 0.2-0.3 pH units in the case of acidic and up-shifted by 0.3-0.5 pH units in the case of basic residues. Shifted pKa values in the presence of denaturant may have a pronounced effect on the outcome of the protein stability obtained from denaturant unfolding experiments.  相似文献   

5.
Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01). The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81) with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.  相似文献   

6.
Two crystals forms of bovine pancreatic trypsin inhibitor are produced between pH 8.39 and 10.13 when crystals are grown at room temperature from solutions of 1.5 M potassium phosphate. Lower pH values favor the form II crystals, whereas higher pH values favor the form III. The transition from one crystal form to the other occurs at pH 9.35. We examined the crystal lattice contacts in both crystal forms and identified an unusual interaction we believe explains these observations. Spanning the crystallographic 2-fold axis in form III crystals, the Lys 41 side-chain amino nitrogens from 2 symmetry-related molecules are only 2.72 A apart, implying they are hydrogen bonded to one another. In form II crystals, the Lys 41 side-chain amino group is protonated and forms a salt bridge with a solvent-derived phosphate group. For the Lys 41 side-chain amino groups to hydrogen bond in form III crystals, at least 1 member of the pair must be deprotonated. The transition that occurs at pH 9.35 marks the pKa for deprotonation. In solution, the pKa for the Lys 41 side chain is around 10.8. The pKa for one of the interacting Lys 41 side chains in form III crystals is therefore shifted downward by about 1.5 pH units. The energy for lowering the pKa value comes from the many additional intermolecular hydrogen bonds that are present in form III crystals: 19 compared to only 8 in form II crystals.  相似文献   

7.
The ionization properties of Lys and Glu residues buried in the hydrophobic core of staphylococcal nuclease (SN) suggest that the interior of this protein behaves as a highly polarizable medium with an apparent dielectric constant near 10. This has been rationalized previously in terms of localized conformational relaxation concomitant with the ionization of the internal residue, and with contributions by internal water molecules. Paradoxically, the crystal structure of the SN V66E variant shows internal water molecules and the structure of the V66K variant does not. To assess the structural and dynamical character of interior water molecules in SN, a series of 10-ns-long molecular dynamics (MD) simulations was performed with wild-type SN, and with the V66E and V66K variants with Glu66 and Lys66 in the neutral form. Internal water molecules were identified based on their coordination state and characterized in terms of their residence times, average location, dipole moment fluctuations, hydrogen bonding interactions, and interaction energies. The locations of the water molecules that have residence times of several nanoseconds and display small mean-square displacements agree well with the locations of crystallographically observed water molecules. Additional, relatively disordered water molecules that are not observed crystallographically were found in internal hydrophobic locations. All of the interior water molecules that were analyzed in detail displayed a distribution of interaction energies with higher mean value and narrower width than a bulk water molecule. This underscores the importance of protein dynamics for hydration of the protein interior. Further analysis of the MD trajectories revealed that the fluctuations in the protein structure (especially the loop elements) can strongly influence protein hydration by changing the patterns or strengths of hydrogen bonding interactions between water molecules and the protein. To investigate the dynamical response of the protein to burial of charged groups in the protein interior, MD simulations were performed with Glu66 and Lys66 in the charged state. Overall, the MD simulations suggest that a conformational change rather than internal water molecules is the dominant determinant of the high apparent polarizability of the protein interior.  相似文献   

8.
Kuhlman B  Luisi DL  Young P  Raleigh DP 《Biochemistry》1999,38(15):4896-4903
pKa values were measured for the 6 carboxylates in the N-terminal domain of L9 (NTL9) by following NMR chemical shifts as a function of pH. The contribution of each carboxylate to the pH dependent stability of NTL9 was estimated by comparing the pKa values for the native and denatured state of the protein. A set of peptides with sequences derived from NTL9 were used to model the denatured state. In the protein fragments, the pKa values measured for the aspartates varied between 3.8 and 4.1 and the pKa values measured for the glutamates varied between 4.1 and 4.6. These results indicate that the local sequence can significantly influence pKa values in the denatured state and highlight the difficulties in using standard pKa values derived from small compounds. Calculations based on the measured pKa values suggest that the free energy of unfolding of NTL9 should decrease by 4.4 kcal mol-1 when the pH is lowered from 6 to 2. In contrast, urea and thermal denaturation experiments indicate that the stability of the protein decreases by only 2.6 kcal mol-1 when the carboxylates are protonated. This discrepancy indicates that the protein fragments are not a complete representation of the denatured state and that nonlocal sequence effects perturb the pKa's in the denatured state. Increasing the salt concentration from 100 to 750 mM NaCl removes the discrepancy between the stabilities derived from denaturation experiments and the stability changes calculated from the pKa values. At high concentrations of salt there is also less variation of the pKa values measured in the protein fragments. Our results argue that in the denatured state of NTL9 there are electrostatic interactions between groups both local and nonlocal in primary sequence.  相似文献   

9.
The 11-cis-retinal binding site of rhodopsin is of great interest because it is buried in the membrane but yet must provide an environment for charged amino acids. In addition, the active-site lysine residue must be able to engage in rapid Schiff base formation with 11-cis-retinal at neutral and lower pH values. This requires that this lysine be unprotonated. We have begun to study the environment of the active-site lysine using a reporter group adducted to it. Non-active-site permethylated opsin was reacted with 5-nitrosalicylaldehyde, and the resulting Schiff base was permanently fixed by borohydride reduction. The stoichiometry of incorporation was one. This chromophoric and pH-sensitive reporter group affords information on the active-site environment of rhodopsin by determining the ionization constants of its ionizable groups at different pH values. The pH titration of the modified protein showed a single pKa = 7.8 +/- 0.19 ascribable to the ionization of the phenol. The ionization of the modified lysine residue was not observed at all pH values studied. These studies are interpreted to mean that a negatively charged amino acid is propinquous to the active-site lysine residue and that this latter residue does not have an unusually low pKa.  相似文献   

10.
Critical ionizing groups in Aeromonas neutral protease   总被引:2,自引:0,他引:2  
Aeromonas neutral protease possesses two residues critical to its activity. One has a pKa of 5.5 in both the free enzyme and the enzyme-substrate complex and must be deprotonated for maximal activity. The other, which ionizes at pH 7.1 in the free enzyme and at pH 7.4 in the enzyme-substrate complex, must be protonated for optimal enzyme action. The protease is reversibly inhibited by aminoacyl hydroxamates, peptides containing a phenylalanyl residue, phosphoryl-L-phenylalanylglycylglycine, and by beta-phenylpropionyl-L-phenylalanine. The pH dependence of inhibition by the latter revealed that a residue with a pKa of 5.6 influences inhibitor binding. Compounds containing both a hydroxamido group and a chloroacetyl group are particularly effective in inactivating the enzyme, and inhibition is enhanced by hydrophobic residues. Thus, a 33-fold molar excess of chloroacetyl-N-hydroxy-L-phenylalanyl-L-alanyl-L-alanine amide rapidly inactivated Aeromonas neutral protease. Carbethoxylation experiments resulted in a 90% loss in activity which was fully reversible by hydroxylamine; spectral analysis indicated the involvement of a single histidine residue. Protection against both esterification and carbethoxylation was furnished by the presence of beta-phenylproprionyl-L-phenylalanine. Inactivation experiments suggest that a glutamic or aspartic acid and a histidine residue are responsible for the pKa values revealed by pH dependence studies.  相似文献   

11.
K K Wong  J S Blanchard 《Biochemistry》1989,28(8):3586-3590
Human erythrocyte glutathione reductase catalyzes the pyridine nucleotide dependent reduction of oxidized glutathione (GSSG). The pH dependence of the kinetic parameters V and V/K for three reduced pyridine nucleotide substrates, the Ki's for three competitive inhibitors (versus NADPH), and the temperature dependence of the V pH profile have been determined. Below pH 8, V and V/K for NADPH, 2',3'-cyclic-NADPH, and NADH are pH independent. In the basic pH region, both V and V/K for the three substrates are pH dependent. All three of the V profiles decrease with increasing pH as a group with a pKa of approximately 9.2 is titrated. The V/K profiles for NADPH, 2',3'-cyclic-NADPH, and NADH decrease at high pH as a group with a pKa of greater than 9.8, 8.9, and 8.8, respectively, is deprotonated. The Ki's for ATP-ribose and 2',5'-ADP are pH independent below pH 8 but increase in the basic region as a group with a pKa of about 8.8 and 8.5, respectively, is deprotonated. The Ki of AADP is pH independent between pH 6 and 9. These studies suggest that binding interactions between the 2'-phosphate of NADPH and the enzyme are predominately nonionic. The temperature dependence of the pK observed in all V pH profiles allows the calculation of an enthalpy of ionization of 3.2 kcal/mol for this group. The high pK and low enthalpy of ionization suggest that the protonation state of the His-467'-Glu-472' ion pair observed in the structure of human erythrocyte glutathione reductase influences proton-transfer steps occurring in the oxidative half-reaction.  相似文献   

12.
Bai P  Luo L  Peng Zy 《Biochemistry》2000,39(2):372-380
The molten globule state of alpha-lactalbumin (alpha-LA) has been considered a prototype of partially folded proteins. Despite the importance of molten globules in understanding the mechanisms of protein folding and its relevance to some biological phenomena, site-specific information on the structure and dynamics of a molten globule is limited, largely because of the high conformational flexibility and heterogeneity. Here, we use selective isotope labeling and (19)F NMR to investigate the solvent accessibility and side-chain dynamics of aromatic residues in the molten globule of alpha-LA. Comparison of these properties with those of the native and unfolded protein indicates that the alpha-LA molten globule is highly heterogeneous; each residue has its unique solvent accessibility and motional environment. Many aromatic residues normally buried in the interior of native alpha-LA remain significantly buried in the molten globule and the side-chain dynamics of these residues are highly restricted. Our results suggest that hydrophobic and van der Waals interactions mediated by the inaccessible surface area could be sufficient to account for all the stability of the alpha-LA molten globule, which is approximately 50% of the value for the native protein.  相似文献   

13.
Gao G  DeRose EF  Kirby TW  London RE 《Biochemistry》2006,45(6):1785-1794
The base excision repair (BER) process requires removal of an abasic deoxyribose-5-phosphate group, a catalytic activity that has been demonstrated for the N-terminal 8 kDa domain of DNA polymerase beta (Pol beta), and for the homologous domain of DNA polymerase lambda (Pol lambda). Previous studies have demonstrated that this activity results from formation of a Schiff base adduct of the abasic deoxyribose C-1' with a lysine residue (K312 in the case of Pol lambda), followed by a beta-elimination reaction. To better understand the underlying chemistry, we have determined pKa values for the lysine residues in the Pol lambda lyase domain labeled with [epsilon-13C]lysine. At neutral pH, the H(epsilon) protons on 3 of the 10 lysine residues in this domain, K287, K291, and K312, exhibit chemical shift inequivalence that results from immobilization of the lysyl side chains. For K287 and K291, this results from the K287-E261 and K291-E298 salt bridge interactions, while for K312, immobilization apparently results from steric and hydrogen-bonding interactions that constrain the position of the lysine side chain. The pKa value of K312 is depressed to 9.58, a value indicating that at physiological pH K312 will exist predominantly in the protonated form. Titration of the domain with hairpin DNA containing a 5'-tetrahydrofuran terminus to model the abasic site produced shifts of the labeled lysine resonances that were in fast exchange but appeared to be complete at a stoichiometry of approximately 1:1.3, consistent with a dissociation constant of approximately 1 microM. The epsilon-proton shifts of K273 were the most sensitive to the addition of the DNA, apparently due to changes in the relative orientation between K273 and W274 in the DNA complex. The average pKa values increased by 0.55, consistent with the formation of some DNA-lysine salt bridges and with the general pH increase expected to result from a reduction in the net positive charge of the complex. A general increase in the Hill coefficients observed in the complex is consistent with the screening of the interacting lysine residues by the DNA. The pKa of K312 residue increased to 10.58 in the complex, probably due to salt bridge formation with the 5'-phosphate group of the DNA. The pKa values obtained for the lyase domain of Pol lambda in the present study are consistent with recent crystallographic studies of Pol beta complexed with 5-phosphorylated abasic sugar analogues in nicked DNA which reveal an open site with no obvious interactions that would significantly depress the pK value for the active site lysine residue. It is suggested that due to the heterogeneity of the damaged DNA substrates with which Pol lambda as well as other related polymerases may be required to bind, the unexpectedly poor optimization of the lyase catalytic site may reflect a compromise of flexibility with catalytic efficiency.  相似文献   

14.
Acidic pKas of histidines buried within the protein interior are frequently rationalized on the contradictory basis of either polar interactions within the protein or the effects of a hydrophobic environment. To examine these relationships, we surveyed the buried surface area, depth of burial, polar interactions, and crystallographic temperature factors of histidines of known pKa. It has been found that buried environments of histidines do not always result in acidic pKas. Instead, the variability of histidine pKas increases for residues where the majority of the side-chain is buried. Because buried histidines are always found in mixed polar/apolar environments, multiple environmental contributions to pKa values must be considered. However, the quantitative relationships between heterogeneous environments and pKa values are not immediately apparent from the available data.  相似文献   

15.
Several recent studies have shown that it is possible to increase protein stability by improving electrostatic interactions among charged groups on the surface of the folded protein. However, the stability increases are considerably smaller than predicted by a simple Coulomb's law calculation, and in some cases, a charge reversal on the surface leads to a decrease in stability when an increase was predicted. These results suggest that favorable charge-charge interactions are important in determining the denatured state ensemble, and that the free energy of the denatured state may be decreased more than that of the native state by reversing the charge of a side chain. We suggest that when the hydrophobic and hydrogen bonding interactions that stabilize the folded state are disrupted, the unfolded polypeptide chain rearranges to compact conformations with favorable long-range electrostatic interactions. These charge-charge interactions in the denatured state will reduce the net contribution of electrostatic interactions to protein stability and will help determine the denatured state ensemble. To support this idea, we show that the denatured state ensemble of ribonuclease Sa is considerably more compact at pH 7 where favorable charge-charge interactions are possible than at pH 3, where unfavorable electrostatic repulsion among the positive charges causes an expansion of the denatured state ensemble. Further support is provided by studies of the ionic strength dependence of the stability of charge-reversal mutants of ribonuclease Sa. These results may have important implications for the mechanism of protein folding.  相似文献   

16.
《Biophysical journal》2020,118(8):1838-1849
The protonation state of embedded charged residues in transmembrane proteins (TMPs) can control the onset of protein function. It is understood that interactions between an embedded charged residue and other charged or polar residues in the moiety would influence its pKa, but how the surrounding environment in which the TMP resides affects the pKa of these residues is unclear. Proteorhodopsin (PR), a light-responsive proton pump from marine bacteria, was used as a model to examine externally accessible factors that tune the pKa of its embedded charged residue, specifically its primary proton acceptor D97. The pKa of D97 was compared between PR reconstituted in liposomes with different net headgroup charges and equilibrated in buffer with different ion concentrations. For PR reconstituted in net positively charged compared to net negatively charged liposomes in low-salt buffer solutions, a drop of the apparent pKa from 7.6 to 5.6 was observed, whereas intrinsic pKa modeled with surface pH calculated from Gouy-Chapman predictions found an opposite trend for the pKa change, suggesting that surface pH does not account for the main changes observed in the apparent pKa. This difference in the pKa of D97 observed from PR reconstituted in oppositely charged liposome environments disappeared when the NaCl concentration was increased to 150 mM. We suggest that protein-intrinsic structural properties must play a role in adjusting the local microenvironment around D97 to affect its pKa, as corroborated with observations of changes in protein side-chain and hydration dynamics around the E-F loop of PR. Understanding the effect of externally controllable factors in tuning the pKa of TMP-embedded charged residues is important for bioengineering and biomedical applications relying on TMP systems, in which the onset of functions can be controlled by the protonation state of embedded residues.  相似文献   

17.
The recombinant high-potential iron-sulfur protein (HiPIP) iso-I from Ectothiorhodospira halophila has been mutated at position 68. The αC of Val 68 is within a 0.6-nm sphere from the closest iron ion of the cluster. The valine residue has been replaced by a negatively charged glutamate residue (V68E) and by a positively charged lysine residue (V68K). With respect to the recombinant wild-type protein the reduction potentials of the V68E and V68K variants are –21±2 and +29±2?mV respectively (200?mM NaCl, pH?7, 25??°C). The solution structure of the V68E mutant was solved up to a pairwise RMSD of 66?pm for backbone atoms and 138?pm for all heavy atoms. The structure of the variant is very similar to that of recombinant wild type, indicating that the observed changes in reduction potentials are largely due to the effect of the introduced charges. It is proposed that the valence distribution within the oxidized iron-sulfur cluster is affected only slightly by the change in charge at position 68, but consistently with a simple electrostatic model.  相似文献   

18.
Electrostatic interactions in proteins can be dissected experimentally by determining the pKa values of their constituent ionizable amino acids. To complement previous studies of the glutamic acid and histidine residues in Bacillus circulans xylanase (BCX), we have used NMR methods to measure the pKa s of the seven aspartic acids and the C-terminus of this protein. The pKa s of these carboxyls are all less than the corresponding values observed with random coil polypeptides, indicating that their ionization contributes favorably to the stability of the folded enzyme. In general, the aspartic acids with the most reduced pKa s are those with limited exposure to the solvent and a high degree of conservation among homologous xylanases. Most dramatically, Asp 83 and Asp 101 have pKa s < 2 and thus remain deprotonated in native BCX under all conditions examined. Asp 83 is completely buried, forming a strong salt bridge with Arg 136. In contrast, Asp 101 is located on the surface of the protein, stabilized in the deprotonated form by an extensive network of hydrogen bonds involving an internal water molecule and the neutral side-chain and main-chain atoms of Ser 100 and Thr 145. These data provide a complete experimental database for theoretical studies of the ionization behavior of BCX under acidic conditions.  相似文献   

19.
The folding thermodynamics and kinetics of the alpha-spectrin SH3 domain with a redesigned hydrophobic core have been studied. The introduction of five replacements, A11V, V23L, M25V, V44I and V58L, resulted in an increase of 16% in the overall volume of the side-chains forming the hydrophobic core but caused no remarkable changes to the positions of the backbone atoms. Judging by the scanning calorimetry data, the increased stability of the folded structure of the new SH3-variant is caused by entropic factors, since the changes in heat capacity and enthalpy upon the unfolding of the wild-type and mutant proteins were identical at 298 K. It appears that the design process resulted in an increase in burying both the hydrophobic and hydrophilic surfaces, which resulted in a compensatory effect upon the changes in heat capacity and enthalpy. Kinetic analysis shows that both the folding and unfolding rate constants are higher for the new variant, suggesting that its transition state becomes more stable compared to the folded and unfolded states. The phi(double dagger-U) values found for a number of side-chains are slightly lower than those of the wild-type protein, indicating that although the transition state ensemble (TSE) did not change overall, it has moved towards a more denatured conformation, in accordance with Hammond's postulate. Thus, the acceleration of the folding-unfolding reactions is caused mainly by an improvement in the specific and/or non-specific hydrophobic interactions within the TSE rather than by changes in the contact order. Experimental evidence showing that the TSE changes globally according to its hydrophobic content suggests that hydrophobicity may modulate the kinetic behaviour and also the folding pathway of a protein.  相似文献   

20.
The energetics of a salt bridge formed between the side chains of aspartic acid 70 (Asp70) and histidine 31 (His31) of T4 lysozyme have been examined by nuclear magnetic resonance techniques. The pKa values of the residues in the native state are perturbed from their values in the unfolded protein such that His31 has a pKa value of 9.1 in the native state and 6.8 in the unfolded state at 10 degrees C in moderate salt. Similarly, the aspartate pKa is shifted to a value of about 0.5 in the native state from its value of 3.5-4.0 in the unfolded state. These shifts in pKa show that the salt bridge is stabilized 3-5 kcal/mol. This implies that the salt bridge stabilizes the native state by 3-5 kcal/mol as compared to the unfolded state. This is reflected in the thermodynamic stability of mutants of the protein in which Asp70, His31, or both are replaced by asparagine. These observations and consideration of the thermodynamic coupling of protonation state to folding of proteins suggest a mechanism of acid denaturation in which the unfolded state is progressively stabilized by protonation of its acid residues as pH is lowered below pH 4. The unfolded state is stabilized only if acidic groups in the folded state have lower pKa values than in the unfolded state. When the pH is sufficiently low, the acid groups of both the native and unfolded states are fully protonated, and the apparent unfolding equilibrium constant becomes pH independent. Similar arguments apply to base-induced unfolding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号