首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The species level identity of Lactobacillus NP51, a commercial direct-fed microbial previously identified as Lactobacillus acidophilus NP51, was re-evaluated to determine whether new technologies resulted in changes in the original identification. The phenotypic methods for species identification included API 50 CHL kit and two automated systems, Vitek 2 and MIDI (FAME analysis; a total of three independent FAME analyses). Discrepancies among the identification results with all methods of phenotypic analysis were reported. MicroSeqID 500 16S rRNA system (SeqWright Inc., Houston, TX), a genotypic method, identified the organism as Lactobacillus animalis. Cloning, sequencing and subsequent sequence comparison of NP51 16S–23S intergenic spacer region (ISRs) to nucleotide sequence databases using the BLAST search tool indicated that NP51 can now be named L. animalis. When NP51 was originally identified as L. acidophilus, the designation of L. animalis did not exist taxonomically. The NP51 sequence comparisons using BLAST also revealed that NP51 and a strain previously identified as L. animalis LA51 HOFG1 by Flint and Angert are identical strains under different names. A strain-specific primer pair was also identified for HOFG1 by the same research group. A primer pair (using HOFG1 forward pair) also produced an amplicon unique to NP51. These methods demonstrate the significance of genetic-based detection methods both for scientific identification of organisms from biological samples and to prevent misidentification in food and health industry related microorganisms in which proprietary considerations are an important concern.  相似文献   

2.
3.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

4.
苏勇  姚文  朱伟云 《微生物学报》2008,48(5):577-582
[目的]对分离自猪肠道的乳酸杆菌S1菌株进行鉴定,并比较该菌株与同种的001T菌株的基因差异.[方法]对S1菌株进行16S rRNA基因序列分析和种特异PCR检测,并且对S1菌株和Lactobacillus sobrius 001T进行代表性差异分析(Representational difference analysis,RDA).[结果]16S rRNA基因序列分析表明,与S1菌株最相似的已知菌为L.sobrius.变性梯度凝胶电泳分析显示,仔猪空、回肠细菌图谱中有一与S1菌株有相同迁移位置的优势条带,克隆、测序鉴定表明,与该条带相匹配的16S rRNA基因克隆(Clone S)的最相似已知菌也为L.sobrius.16S rRNA基因系统进化分析表明,S1菌株与Clone S和L.sobrius 16S rRNA基因序列同源性分别为99.8%和99.6%.L.sobrius特异性引物也可以扩增S1株菌的16S rRNA基因的特定片段.因此S1菌株可被确定为Lsobrius.RDA对菌株S1和同种的猪源L.sobrius 001T菌株的基因差异进行分析,未发现这两株菌的基因组差异.[结论]猪肠道乳杆酸菌S1菌株属于L.sobrius,其与猪源L sobrius 001T菌株为相似菌株.  相似文献   

5.
A new real-time PCR assay was successfully developed using a TaqMan fluorescence probe for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific primers and probe were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were compared to those of all available 16S rRNA genes in the GenBank database. The assay, targeting 16S rRNA gene, was evaluated using DNA from a pure culture of L. thermotolerans, DNA from the closely related bacteria Lactobacillus mucosae DSM 13345(T) and Lactobacillus fermentum JCM 1173(T), and DNA from other lactic acid bacteria in quantitative experiments. Serial dilutions of L. thermotolerans DNA were used as external standards for calibration. The minimum detection limit of this technique was 1.84 x 10(3) cells/ml of an L. thermotolerans pure culture. The assay was then applied to chicken feces in two different trials. In the first trial, the cell population was 10(4) cells/g feces on day 4 and 10(5) cells/g feces on days 11 to 18. However, cell populations of 10(6) to 10(7) cells/g feces were detected in the second trial. The total bacterial count, measured by 4',6-diamidino-2-phenylindole (DAPI) staining, was approximately 10(11) cells/g feces. These results suggest that in general, L. thermotolerans is a normal member of the chicken gut microbiota, although it is present at relatively low levels in the feces.  相似文献   

6.
Lactic acid bacteria (LAB) are beneficial for the gastrointestinal tract and reinforce immunity in human health. Recently, many functional products using the lactic acid bacteria have been developed. Among these LAB, Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum are frequently used for probiotic products. In order to monitor these LAB in commercial probiotic products, a multiplex PCR method was developed. We designed four species-specific primer pairs for multiplex PCR from the 16S rRNA, 16S-23S rRNA intergenic spacer region, and 23S rRNA genes in Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum. Using these primer pairs, 4 different LAB were detected with high specificity in functional foods. We suggest that the multiplex PCR method developed in this study would be an efficient tool for simple, rapid, and reliable identification of LAB used as probiotic strains.  相似文献   

7.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

8.
"Lactobacillus pastorianus" (Van Laer, 1892) is not a validly described species and is not included in the Approved List of Bacterial Names. The strain is available in multiple culture collections as Lactobacillus sp. DSM 20197, L. brevis ATCC 8291, "L. pastorianus" CECT 5926, L. brevis JCM 1113, and "L. pastorianus" LMG 11990. Nearly identical 16S rRNA sequences and protein encoding genes for 6-phosphogluconate dehydrogenase (99.9%) revealed this strain as L. paracollinoides. A 16S-23S rRNA intergenic spacer region-based PCR assay did not differentiate "L. pastorianus" DSM 20197 from L. paracollinoides DSM 15502(T). Highly similar RAPD profiles differentiated both strains below species level.  相似文献   

9.
A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation.  相似文献   

10.
The species and strain genetic diversity of bacterial cultures belonging to the genus Lactobacillus, which were isolated from the gastrointestinal microbiome of the human population living in the former Soviet Union in the years 1960-1980, was studied. The bacteria demonstrated probiotic characteristics. Phylogenetic analysis of sequences of the gene coding for 16S rRNA detected earlier by us, showed that the gene found in bacteria isolated from the intestinal content of healthy adults and represented by species L. plantarum, L. helveticus, L. casei/paracasei, L. rhamnosus, and L. fermentum has high homology (97-100%) with this gene in type representatives of the species. The genotypic and strain diversity of cultures was studied using RAPD-PCR and nonspecific primers. This method with the use of the ERIC-1 primer gave reliable and reproducible results as compared that using with M13 and MSP primers and allowed the identification of examined bacteria belonging to the genus Lactobacillus at the level of species and certification at the strain level.  相似文献   

11.
A real-time PCR (RTm-PCR) assay using fluorescently labeled oligonucleotides (TaqMan probes) was used to detect and quantify the recombinant Rhodococcus sp. strain RHA1(fcb) in soil. One primer and probe set targeted a hypervariable region of the 16S rRNA gene unique to strain RHA1(fcb) and its phylogenetic relatives, and the other set targeted the recombinant 4-chlorobenzoate (4-CBA) degradation operon (fcb) and was strain-specific. The method had a 6-log dynamic range of detection (10(2)-10(7) cells ml(-1)) for both probes when DNA from pure cultures was used. Although the method was less sensitive in soil, the estimated number of cells in soil by real-time PCR corresponded to the measured number of RHA1(fcb) cells determined by colony-forming units.  相似文献   

12.
Detection of alcohol-tolerant hiochi bacteria by PCR.   总被引:5,自引:3,他引:2       下载免费PDF全文
We report a sensitive and rapid method for detection of hiochi bacteria by PCR. This method involves the electrophoresis of amplified DNA. Nucleotide sequences of the spacer region between 16S and 23S rRNA genes of 11 Lactobacillus strains were identified by analysis of PCR products. Five primers were designed by analysis of similarities among these sequences. A single cell of Lactobacillus casei subsp. casei could be detected when purified genomic DNA was used as the template. When various cell concentrations of L. casei subsp. casei were added to 50 ml of pasteurized sake and the cells were recovered, the detection limit was about one cell. No discrete band was observed in electrophoresis after PCR when human, Escherichia coli, mycoplasma, Acholeplasma, yeast, or mold DNA was used as the template.  相似文献   

13.
Aims: For the rapid detection of Laribacter hongkongensis, which is associated with human community‐acquired gastroenteritis and traveller’s diarrhoea, we developed a duplex species‐specific PCR assay. Methods and Results: Full‐length of the 16S–23S rRNA intergenic spacer region (ISR) sequences of 52 L. hongkongensis isolates were obtained by PCR‐based sequencing. Two species‐specific primer pairs targeting 16S rRNA gene and ISR were designed for duplex PCR detection of L. hongkongensis. The L. hongkongensis species‐specific duplex PCR assay showed 100% specificity, and the minimum detectable level was 2·1 × 10?2 ng μl?1 genomic DNA which corresponds to 5000 CFU ml?1. Conclusions: The high specificity and sensitivity of the assay make it suitable for rapid detection of L. hongkongensis. Significance and Impact of the Study: This species‐specific duplex PCR method provides a rapid, simple, and reliable alternative to conventional methods to identify L. hongkongensis and may have applications in both clinical and environmental microbiology.  相似文献   

14.
A new real-time PCR assay was successfully developed using a TaqMan fluorescence probe for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific primers and probe were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were compared to those of all available 16S rRNA genes in the GenBank database. The assay, targeting 16S rRNA gene, was evaluated using DNA from a pure culture of L. thermotolerans, DNA from the closely related bacteria Lactobacillus mucosae DSM 13345T and Lactobacillus fermentum JCM 1173T, and DNA from other lactic acid bacteria in quantitative experiments. Serial dilutions of L. thermotolerans DNA were used as external standards for calibration. The minimum detection limit of this technique was 1.84 × 103 cells/ml of an L. thermotolerans pure culture. The assay was then applied to chicken feces in two different trials. In the first trial, the cell population was 104 cells/g feces on day 4 and 105 cells/g feces on days 11 to 18. However, cell populations of 106 to 107 cells/g feces were detected in the second trial. The total bacterial count, measured by 4′,6-diamidino-2-phenylindole (DAPI) staining, was approximately 1011 cells/g feces. These results suggest that in general, L. thermotolerans is a normal member of the chicken gut microbiota, although it is present at relatively low levels in the feces.  相似文献   

15.
Bdellovibrio-and-like-organisms (BALOs) are small, Gram-negative predatory bacteria with the ability to prey on a wide variety of Gram-negative bacteria, and which may have a significant ecological role. Detection and quantification of BALOs by culture-dependent methods are complicated, as their reproduction is dependent upon the use of appropriate prey. For this reason, a sensitive and specific molecular detection method was developed. This paper describes a SYBR Green-based real-time PCR (quantitative PCR) assay that combines the use of a specific 16S rDNA primer with a universal primer for quantitative detection of halophilic Bacteriovorax. 16S rDNA sequences from 174 BALO strains, including both halophilic and freshwater, were aligned and a consensus region was identified that is unique to the halophilic Bacteriovorax strains. A specific primer was designed and analysed for specificity. The PCR conditions were optimized to obtain high specificity and sensitivity. The specificity was evaluated by testing a series of halophilic Bacteriovorax samples and prey specimens, including both pure cultures and environmental saltwater samples. A linear and reproducible standard curve was obtained over a range of 10(1)-10(6) gene copies and the detection limit was determined to be 10 copies of 16S rRNA gene per reaction. The results presented in this study validate the procedure as a rapid, sensitive and accurate method for the detection and quantification of halophilic Bacteriovorax in environmental saltwater samples. It is anticipated that this culture-independent method will facilitate future investigations of the distribution and population dynamics of these interesting predatory bacteria, leading to a better understanding of their ecological role.  相似文献   

16.
The goal of this study was to develop a method allowing rapid identification of the lactic acid bacteria strains in use in the laboratory (Lactobacillus plantarum NCIMB8826; L. fermentum KLD; L. reuteri 100-23; L. salivarius UCC43321; L. paracasei LbTGS1.4; L. casei ATCC393), based on PCR amplification of 16S RNA coding sequences. First, specific forward oligonucleotides were designed in the variable regions of 16S RNA coding sequences of six Lactobacillus strains. The reverse oligonucleotide was designed in the region where the sequences were homologous for the six strains. The expected size of the amplification product was +/-1000 bp. The specificity of the method was tested on total chromosomal DNA. For five out of the six strains, the amplification of the fragment was strain-specific and the method was directly applicable to colonies. For the strain L. casei ATCC393, an additional argument to the classification of this bacteria in the paracasei group could be proposed. Validation of the developed method was performed by applying it to six Lactobacillus reference strains and to various species of bacteria.  相似文献   

17.
Following the application of several molecular techniques strain R 19c, isolated from sausage by Reuter in 1970 and deposited at the DSMZ as Lactobacillus sp., has been identified as pertaining to a new species. It showed singular ISR-DdeI and ISR-HaeIII profiles that allowed its differentiation from 68 lactic acid bacteria reference strains analyzed. Phylogenetic analysis based on 16S rRNA gene sequences places this strain in the genus Lactobacillus within the Lactobacillus alimentarius group. Species L. versmoldensis is the closest phylogenetic neighbor with 96.3% sequence similarity. DNA-DNA hybridization experiments confirmed the independent status at species level of this strain. Species-specific primers for PCR detection of this new species have been developed. Phenotypically it can be distinguished from the closest relative L. versmoldensis by several traits such as the peptidoglycan type (L-Lys-Gly-D-Asp), acid production from L-rhamnose, D-mannitol and L-fucose and its inability to ferment d-galactose, d-melibiose and d-sucrose. The name Lactobacillus tucceti sp. nov. is proposed with strain R 19c(T) (=DSM 20183(T)= CECT 5920(T)) as the type strain.  相似文献   

18.
Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.  相似文献   

19.
Obtaining full-length 16S rRNA gene sequences is important for generating accurate taxonomy assignments of bacteria, which normally is realized via clone library construction. However, the application of clone library has been hindered due to its limitations in sample throughput and in capturing minor populations (<1?% of total microorganisms). To overcome these limitations, a new strategy, two-step denaturing gradient gel electrophoresis (2S-DGGE), is developed to obtain full-length 16S rRNA gene sequences. 2S-DGGE can compare microbial communities based on its first-round DGGE profiles and generate partial 16S rRNA gene sequences (8-534?bp, Escherichia coli numbering). Then, strain-specific primers can be designed based on sequence information of bacteria of interest to PCR amplify their remaining 16S rRNA gene sequences (515-1541?bps, E. coli numbering). The second-round DGGE can confirm DNA sequence purity of these PCR products. Finally, the full-length 16S rRNA gene sequences can be obtained through combining the two partial DNA sequences. By employing 2S-DGGE, taxonomies of a group of dehalogenating bacteria have been assigned based on their full-length 16S rRNA gene sequences, several of which existed in dehalogenating microcosms as minor populations. In all, 2S-DGGE can be utilized as a medium throughput method for taxonomic identification of interested/minor populations from single or multiple microbial consortia.  相似文献   

20.
The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号