首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three‐dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face‐scanning electron microscopy (SBF‐SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF‐SEM is relatively straightforward and is becoming routine in high‐end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF‐SEM as a tool for studying embryonic vertebrate development. Birth Defects Research (Part C) 105:9–18, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Using immunohistochemistry and RNA analyses we examined the fate of components of a newly identified matrix that develops between granulosa cells (focimatrix, abbreviated from focal intraepithelial matrix) and of the follicular basal lamina in ovulating bovine ovarian follicles. Pre- and postovulatory follicles were generated by treatment with estradiol (Day 1), progesterone (Days 1-10), and prostaglandin analogue (Day 9) with either no further treatment (Group 1, n = 6) and or with 25 mg porcine LH (Day 11, Group 2, n = 8 or Day 10, Group 3, n = 8) and ovariectomy on Day 12 (12-14 hr post LH in Group 2, 38-40.5 hr in Group 3). In the time frame examined no loss of follicular basal lamina laminin chains beta2 and gamma1 or nidogen 1 was observed. In the follicular basal lamina collagen type IV alpha1 and perlecan were present prior to ovulation; after ovulation collagen type IV alpha1 was discontinuously distributed and perlecan was absent. Versican in the theca interna adjacent to the follicular basal lamina in preovulatory follicles was not observed post ovulation, however, the granulosa cells then showed strong cytoplasmic staining for versican. Expression of versican isoforms V0, V1, and V3 was detected at all stages. Focimatrix was observed in preovulatory follicles. It contained collagen type IV alpha1, laminins beta2 and gamma1, nidogen 1 and perlecan and underwent changes in composition similar to that of the follicular basal lamina. In conclusion focimatrix and the follicular basal lamina are degraded at ovulation. Individual components are lost at different times.  相似文献   

3.
Nothing in biology stimulates the imagination like the development of a single fertilized egg into a newborn child. Consequently, a major focus of biomedical research is aimed at understanding cell differentiation, proliferation, and specialization during child health and human development. However, the fact that the increase in size and shape of the growing embryo has as much to do with the extracellular matrix (ECM) as with the cells themselves, is largely overlooked. Cells in developing tissues are surrounded by a fiber-composite ECM that transmits mechanical stimuli, maintains the shape of developing tissues, and functions as a scaffold for cell migration and attachment. The major structural element of the ECM is the collagen fibril. The fibrils, which are indeterminate in length, are arranged in different tissues in exquisite supramolecular architectures, including parallel bundles, orthogonal lamellae, and concentric weaves. This article reviews our current understanding of the synthesis and assembly of collagen fibrils, and discusses challenging questions about how cells assemble an organized ECM during embryogenesis.  相似文献   

4.
5.
Summary Specific interactions between cells and the extracellular matrix (ECM) in which they are embedded play a vital role in tissue organization. In recent years, many of the individual components of the extracellular matrix have been isolated and their molecular structures elucidated, but the detailed topography of most extracellular matrices, as they are deposited by cells, is still largely unknown. In this study, the insoluble extracellular matrix produced by cultured rat vascular smooth muscle cells has been characterized morphologically using high-resolution electron microscopy of rotary platinum replicas. These cells grew as flat sheets in culture, secreting their matrix laterally and basally. The matrix was composed of a cross-linked fibrillar meshwork. Some fine fibers (10 to 15 nm in diameter) were naked, but most of the filamentous mesh was covered with coarse granular material. Limited digestion with trypsin or pancreatic elastase removed most of this coating, indicating that the granules were glycoproteins and proteoglycans. Another subset of matrix fibrils (20 to 40 nm in diameter) was identified as type I collagen by direct comparison with purified bovine skin collagen. In addition to exposing the underlying filamentous substructure of the matrix, protease treatment also revealed large, straight fiber bundles and globules of amorphous material suspended in the filamentous web. This novel view of a complex matrix promises to provide spatial information that will be useful in future studies of cell interactions with the ECM. These studies were supported in part by NIH Biomedical Research Support grant S07-RR-05684.  相似文献   

6.
To study the biology of basal laminae in the developing nervous system the protein composition of the embryonic retinal basal lamina was investigated, the site of synthesis of its proteins in the eye was determined, and basal lamina assembly was studied in vivo in two assay systems. Laminin, nidogen, agrin, collagen IV, and XVIII are major constituents of the retinal basal lamina. However, only agrin is synthesized by the retina, whereas the other matrix constituents originate from cells of the ciliary body, the lens, or the optic disc. The synthesis from extraretinal tissues infers that the retinal basal lamina proteins must be shed from their tissues of origin into the vitreous body and from there bind to receptor proteins provided by the retinal neuroepithelium. The fact that all proteins typical for the retinal basal lamina are abundant in the vitreous body and a new basal lamina is only formed when the vitreous body was directly adjacent to the retina is consistent with the contention of the vitreous body having a function in retinal basal lamina formation. Basal lamina assembly was also studied after disrupting the retinal basal lamina by intraocular injection of collagenase. The basal lamina regenerated after chasing the collagenase with Matrigel, which served as a collagenase inhibitor. The basal lamina was reconstituted within 6 h. However, the regenerated basal lamina was located deeper in the retina than normal by reconstituting along the retracted neuroepithelial endfeet demonstrating that these endfeet are the preferred site of basal lamina assembly.  相似文献   

7.
This review summarizes the current state of knowledge regarding the proteins composing the extracellular matrix in the human prostate. The normal expression as well as the changes which occur in PIN and carcinoma are described for the lamins, collagens, and glycosaminoglycans.  相似文献   

8.
The purpose of this study was to characterize the collagen in hereditary dilated cardiomyopathic hamster hearts, and to examine the participation of the collagen in the occurrence and progression of cardiomyopathy.BIO 53.58 hamsters (5, 10, 20 weeks old) were used as the model of dilated cardiomyopathy. Flb hamsters were used as controls. The collagen content was almost constant at any age in the Flb hamsters, but increased with age in BIO 53.58 hamsters. Type III collagen increased significantly in BIO 53.58 hamsters at 10 weeks. The acetic acid solubility of collagen decreased in BIO 53.58 hamsters as the fibrosis progressed, but was unchanged in controls. Reducible crosslinks showed a tendency to decrease progressively in BIO 53.58 hamsters. There were no differences between Flb and BIO 53.58 hamsters at 5 weeks, but its expression in BIO 53.58 hamsters at 10 and 20 weeks of age increased compared to Flb controls.These findings indicate that in the early phase of cardiomyopathy the extracellular matrix of the myocardium is rich in type III collagen. In the later phase, the matrix resembles that of hard tissues, whose collagen is mainly of type I collagen and is insoluble. These data suggest that the increased collagen synthesis may impair the cardiac function in the development of cardiomyopathy.  相似文献   

9.
Glial cells in higher invertebrate groups are usually recognized on the basis of their location and general morphological or functional criteria. In this study of the crustacean visual system, we have approached the analysis of the relations between glial cells and the extracellular matrix by classical histochemical methods for carbohydrates at the light and electron microscopic levels, carbonic anhydrase histochemistry and by the biochemical characterization of sulphated polysaccharides. Periodic acid-Schiff-positive glial cells and processes were observed in the retina, basement membrane below the retina and in the optic ganglia. Carbonic anhydrase was not detected in the retina but it was demonstrated in all optic ganglia. The biochemical analysis of the extracellular matrix confirmed the alcian blue reaction and showed that sulphated polysaccharides are not abundant in the optic neuropils. This article describes into more details the crustacean visual system glial cells classification, and the relation between them and the extracellular matrix. In addition, they show that glial cells are the main components of the retinal basement membrane.  相似文献   

10.
The epithelial-mesenchymal interactions required for kidney organogenesis are disrupted in mice lacking the integrin alpha8beta1. None of this integrin's known ligands, however, appears to account for this phenotype. To identify a more relevant ligand, a soluble integrin alpha8beta1 heterodimer fused to alkaline phosphatase (AP) has been used to probe blots and cDNA libraries. In newborn mouse kidney extracts, alpha8beta1-AP detects a novel ligand of 70-90 kD. This protein, named nephronectin, is an extracellular matrix protein with five EGF-like repeats, a mucin region containing a RGD sequence, and a COOH-terminal MAM domain. Integrin alpha8beta1 and several additional RGD-binding integrins bind nephronectin. Nephronectin mRNA is expressed in the ureteric bud epithelium, whereas alpha8beta1 is expressed in the metanephric mesenchyme. Nephronectin is localized in the extracellular matrix in the same distribution as the ligand detected by alpha8beta1-AP and forms a complex with alpha8beta1 in vivo. Thus, these results strongly suggest that nephronectin is a relevant ligand mediating alpha8beta1 function in the kidney. Nephronectin is expressed at numerous sites outside the kidney, so it may also have wider roles in development. The approaches used here should be generally useful for characterizing the interactions of novel extracellular matrix proteins identified through genomic sequencing projects.  相似文献   

11.
The following article is a correction to a previously published version: Bernardini G, Braconi D, Lusini P, Santucci A. Postgenomics of Neisseria meningitidis: an update. Expert Rev. Proteomics 6(2), 135–143 (2009). These corrections were made owing to concerns being raised regarding similarity between sections of the text with previously published works.

For clarity, the corrected article is published in full below. The sections in bold text correspond to the corrected sections and are therefore different to the previously published version.

Neisseria meningitidis infection still remains a major life-threatening bacterial disease worldwide. The availability of bacterial genomic sequences generated a paradigm shift in microbiological and vaccines sciences, and post-genomics (comparative genomics, functional genomics, proteomics and a combination/evolution of these techniques) played important roles in elucidating bacterial biological complexity and pathogenic traits, at the same time accelerating the development of therapeutic drugs and vaccines. This article summarizes the most recent technological and scientific advances in meningococcal biology and pathogenesis aimed at the development and characterization of vaccines against the pathogenic meningococci.  相似文献   

12.
Weber C  Schmid V 《Tissue & cell》1985,17(6):811-822
The ultrastructure and the histochemistry of the fibrous system in the mesogloeal extracellular matrix (ECM) of two hydromedusae (Polyorchis penicillatus and Aglanlha digitale) has been examined. There is a fundamental difference in the architecture of the fibrous system between the two species. In Polyorchis, 60-150 A thick, striated fibrils with periodicities of 60-65 A form a three-dimensional network which fills in the entire ECM of outer and inner mesogloea. In the outer mesogloea vertical fibres (up to 1.8 mum in diameter) penetrate the threedimensional network and branch near the exumbrellar and subumbrellar side. These branches impinge on a dense matrix covering the exumbrellar and subumbrellar surface. In Aglantha the branches of thick vertical fibres anchor at the subumbrellar side in a dense plexus (0.2-0.3 mum in thickness) which consists of two types of fibrils (35-40 and 80-100 nm in diameter). Towards the exumbrellar side the vertical fibres branch and intermingle with a meshwork of non-striated fibrils with uniform diameter (35-40 nm). These fibrils form a laminated structure (about 1 mum in thickness) so that fibrils of each layer course in the same direction but fibrils of adjacent layers run perpendicularly to each other. The banded pattern with periodicities of 600-640 A observed in the electron microscope and by histochemical methods confirm the thick vertical fibres and their branches to be a collagen. There is also strong evidence that the laminated structure in Aglantha represents layers of collagen fibrils.  相似文献   

13.
Fibrillar collagen–integrin interactions in the extracellular matrix (ECM) regulate a multitude of cellular processes and cell signalling. Collagen I fibrils serve as the molecular scaffolding for connective tissues throughout the human body and are the most abundant protein building blocks in the ECM. The ECM environment is diverse, made up of several ECM proteins, enzymes, and proteoglycans. In particular, glycosaminoglycans (GAGs), anionic polysaccharides that decorate proteoglycans, become depleted in the ECM with natural aging and their mis-regulation has been linked to cancers and other diseases. The impact of GAG depletion in the ECM environment on collagen I protein interactions and on mechanical properties is not well understood. Here, we integrate ELISA protein binding assays with liquid high-resolution atomic force microscopy (AFM) to assess the effects of GAG depletion on the interaction of collagen I fibrils with the integrin α2I domain using separate rat tails. ELISA binding assays demonstrate that α2I preferentially binds to GAG-depleted collagen I fibrils in comparison to native fibrils. By amplitude modulated AFM in air and in solution, we find that GAG-depleted collagen I fibrils retain structural features of the native fibrils, including their characteristic D-banding pattern, a key structural motif. AFM fast force mapping in solution shows that GAG depletion reduces the stiffness of individual fibrils, lowering the indentation modulus by half compared to native fibrils. Together these results shed new light on how GAGs influence collagen I fibril–integrin interactions and may aid in strategies to treat diseases that result from GAG mis-regulation.  相似文献   

14.
The extracellular matrix and blood vessel formation: not just a scaffold   总被引:2,自引:0,他引:2  
The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation.  相似文献   

15.
This study was conducted to examine the influence of acute streptozotocin‐induced diabetes on cardiac remodelling and function in mice subjected to myocardial infarction (MI) by coronary artery ligation. Echocardiography analysis indicated that diabetes induced deleterious cardiac functional changes as demonstrated by the negative differences of ejection fraction, fractional shortening, stroke volume, cardiac output and left ventricular volume 24 hrs after MI. Temporal analysis for up to 2 weeks after MI showed higher mortality in diabetic animals because of cardiac wall rupture. To examine extracellular matrix remodelling, we used fluorescent molecular tomography to conduct temporal studies and observed that total matrix metalloproteinase (MMP) activity in hearts was higher in diabetic animals at 7 and 14 days after MI, which correlated well with the degree of collagen deposition in the infarct area visualized by scanning electron microscopy. Gene arrays indicated temporal changes in expression of distinct MMP isoforms after 1 or 2 weeks after MI, particularly in diabetic mice. Temporal changes in cardiac performance were observed, with a trend of exaggerated dysfunction in diabetic mice up to 14 days after MI. Decreased radial and longitudinal systolic and diastolic strain rates were observed over 14 days after MI, and there was a trend towards altered strain rates in diabetic mouse hearts with dyssynchronous wall motion clearly evident. This correlated with increased collagen deposition in remote areas of these infarcted hearts indicated by Masson's trichrome staining. In summary, temporal changes in extracellular matrix remodelling correlated with exaggerated cardiac dysfunction in diabetic mice after MI.  相似文献   

16.
闫伽宁  胥义 《生物工程学报》2021,37(11):4024-4035
组织器官脱细胞后制备成的脱细胞基质 (Decellularized extracellular matrix,dECM) 含有许多蛋白质和生长因子,不仅能够为细胞提供三维支架还能够调控细胞再生,是目前最具有生物结构的生物材料。3D生物打印可以层层打印dECM和自体细胞的组合,构建载细胞组织结构。文中综述了不同来源的组织器官脱细胞基质生物墨水制备方法,包括脱细胞、交联等,以及脱细胞基质生物墨水在生物打印中的应用,并展望了其未来的应用前景。  相似文献   

17.
A novel human glioma-associated extracellular matrix (ECM) glycoprotein has been identified by murine monoclonal antibody 81C6. The glycoprotein, designated GMEM, is expressed in the ECM of glioma and mesenchymal cell cultures, in the perivascular matrix of endothelial proliferations of human gliomas, and in the stroma of human glioma xenografts in athymic mice, where it has been used as a target antigen for monoclonal antibody tumor localization and radioimaging. We report here on the immunochemical and biochemical characterization of GMEM. Polyacrylamide gel analysis of immunoprecipitated [3H]-leucine- and [3H]-glucosamine-labeled ECM from the human glioma cell line U-251MG has shown that GMEM is a high-molecular-weight macromolecule (Mr approximately 1,000,000) composed of Mr approximately 230,000 disulfide-bonded glycoprotein subunits. Immunoprecipitation, immunoblot, and one-dimensional peptide map analysis have shown that GMEM is distinct from human fibroblast and plasma fibronectin. These results support previous immunohistology and absorption analysis findings, indicating that GMEM is distinct from fibronectin, laminin, and glycosaminoglycans secreted by U-251MG.  相似文献   

18.
Extracellular matrix (ECM) hydrogels are used as scaffolds to facilitate the repair and reconstruction of tissues. This study aimed to optimize the decellularization process of porcine skeletal muscle ECM and to formulate a matrix hydrogel scaffold. Five multi‐step methods (methods A–E) were used to generate acellular ECM from porcine skeletal muscle [rinsing in SDS, trypsin, ethylenediaminetetraacetic acid (EDTA), Triton X‐100 and/or sodium deoxycholate at 4–37°C]. The resulting ECM was evaluated using haematoxylin and eosin, 4‐6‐diamidino‐2‐phenylindole (DAPI) staining, and DNA quantification. Acellular matrix was dissolved in pepsin and gelled at 37°C. Hydrogel response to temperature was observed in vivo and in vitro. ECM components were assessed by Masson, Sirius red, and alcian blue staining, and total protein content. Acellular porcine skeletal muscle exhibited a uniform translucent white appearance. No intact nuclear residue was detected by haematoxylin and eosin staining, while DAPI staining showed a few nuclei in the matrixes produced by methods B, C, and D. Method A generated a gel that was too thin for gelation. However, the matrix obtained by rinsing in 0.2% trypsin/0.1% EDTA, 0.5% Triton X‐100, and 1% Triton X‐100/0.2% sodium deoxycholate was nuclei‐free and produced a viscous solution that formed a structurally stable white jelly‐like hydrogel. The residual DNA content of this solution was 49.37 ± 0.72 ng/mg, significantly less than in fresh skeletal muscle, and decreased to 19.22 ± 0.85 ng/mg after gelation (P < 0.05). The acellular matrix was rich in collagen and glycosaminoglycan, with a total protein concentration of 64.8 ± 6.9%. An acellular ECM hydrogel from porcine skeletal muscle was efficiently produced.  相似文献   

19.
Summary Using gelatin, casein, and fibronectin as substrates and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), we have identified protein-degrading enzymes in both normal and Rous sarcoma virus-transformed primary avian tendon cells. Although there are some consistent differences in the profile of the gelatinolytic activities (mainly metalloproteinases) between normal and transformed cells, the amounts of fibronectin-degrading activities seem to be comparable. In vitro studies reported here demonstrate that the degradation of fibronectin is partially and specifically inhibited by gelatin and collagen. We therefore propose that the abundant collagen present in normal tendon cells protects fibronectin against degradation. Conversely, in transformed cells, where collagen levels are drastically reduced, fibronectin may be more accessible to degradation. Thus differences in the steady-state levels of fibronectin on normal and transformed cells may be, at least in part, a consequence of changes in collagen levels. This work was supported by the Office of Health and Environmental Research, Office of Energy Research, U.S. Department of Energy, Washington, D.C., under contracts DE-AC03-76-SF00098 and DE-AC03-76-SF01012.  相似文献   

20.
Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号