首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the capabilities of flow cytometry in the analysis of a multidrug resistant (MDR) human ovarian cancer cell line 2780AD and its drug sensitive parental A2780. A functional assay using daunorubicin (DNR) as a fluorescent probe was combined with an immunofluorescence assay of P-glycoprotein (P-gp) using the monoclonal antibody MRK-16. Functionally MDR could be demonstrated by the lower DNR-content of MDR cells compared to DNR-content of drug sensitive cells. When incubation was performed with DNR in the presence of verapamil, DNR-content increased in the MDR cells. However the content of the A2780 cells was never attained. Differences in DNR-content were not related to differences in DNA-content. In experimental cell lines immunofluorescence data were inversely related with those of DNR-content: MDR cells had high levels of P-gp expression and low levels of DNR-content (and vice versa in drug sensitive cells). Both assays can be easily combined in a multiparametric flow cytometric procedure to evaluate both parameters simultaneously in the same cells. Analysis of clinical samples demonstrates the existence of aberrant subpopulations which would not be detected by using a single parameter assay.  相似文献   

2.
MDR1 is highly expressed in MDR A2780DX5 ovarian cancer cells, MDR SGC7901R gastric cancer cells and recurrent tumours. It pumps cytoplasmic agents out of cells, leading to decreased drug accumulation in cells and making cancer cells susceptible to multidrug resistance. Here, we identified that miR‐495 was predicted to target ABCB1, which encodes protein MDR1. To reduce the drug efflux and reverse MDR in cancer cells, we overexpressed a miR‐495 mimic in SGC7901R and A2780DX cells and in transplanted MDR ovarian tumours in vivo. The results indicated that the expression of MDR1 in the above cells or tumours was suppressed and that subsequently the drug accumulation in the MDR cells was decreased, cell death was increased, and tumour growth was inhibited after treatment with taxol‐doxorubicin, demonstrating increased drug sensitivity. This study suggests that pre‐treatment with miR‐495 before chemotherapy could improve the curative effect on MDR1‐based MDR cancer.  相似文献   

3.
Drug permeation across the plasma membrane of multidrug-resistant cells depends on the kinetics of the P-glycoprotein-mediated pump activity as well as on the passive permeation of the drug. We here demonstrate a method to characterize kinetically the pump in intact cells. To this purpose, we examined the membrane-transport properties of daunorubicin in various sensitive cancer cell lines and in their multidrug resistant (MDR) counterparts. First, we determined the passive permeability coefficient for daunorubicin. Then, using a flow-through system, the drug flux into the cell was measured after inhibition of the P-glycoprotein-mediated efflux pump. Combining the two results allowed us to calculate the intracellular free concentration of the drug. In the steady-state, the pump rate must equal the net rate of passive diffusion of the drug and, therefore, the same experiments gave us the pumping rate of daunorubicin. These experiments were then repeated at various extracellular drug concentrations. By plotting the pumping rate versus the intracellular drug concentration, we then characterized the P-glycoprotein kinetically. Four independent methods were used to measure the passive permeability coefficient for the cell line A2780. Similar values were obtained. Maximal pump rates (Vmax) showed a good correlation with the amount of P-glycoprotein in the cell lines used. We obtained saturation curves for the variation of the pump rates with the intracellular daunorubicin concentrations. These curves were typical for positive cooperativity, which provides evidence that at least two binding sites for daunorubicin are present on the active transport system of daunorubicin. The apparent Km values for P-glycoprotein-mediated transport, the intracellular free cytosolic daunorubicin concentrations at half-maximal velocity for the cell lines used, were approximately 1.5 microM. Except for the cell lines with the highest amount of P-glycoprotein, the passive efflux rate of daunorubicin proved to be a substantial part of the total daunorubicin efflux rate for the cell lines used. In cell lines with relatively low levels of P-glycoprotein, passive daunorubicin efflux was even the main route of daunorubicin transport from the cells, determining the intracellular steady-state concentrations of daunorubicin.  相似文献   

4.
Anthracycline resistance in multidrug-resistant (MDR) tumor cells is due in part to a reduced cellular drug accumulation. Using a simple kinetic model and numerical computer simulations, we have analyzed mathematically the following possible mechanisms controlling fluxes of the membrane permeable anthracyclines in MDR cells: (1) active outward transport via a specific drug transporter (P-glycoprotein), (2) exocytotic drug export via the endosomal vesicle system, and (3) pH-gradients across the plasma membrane. Model calculations were based on morphometric and kinetic data previously presented in the literature for daunorubicin transport in wild-type Ehrlich ascites tumor cells (EHR2) and the corresponding daunorubicin (DNR)-resistant cell line EHR2/DNR+. The results confirm the possible importance of the cell-surface pH in controlling DNR accumulation in the cells. With P-glycoprotein as the main efflux pump, a catalytic constant of the protein greater than 40 mol DNR transported/mol protein per min is predicted by the model calculations. Changes in the drug binding affinity of P-glycoprotein (Km = 10(-9)-10(-6) M) is of little importance in influencing its effectiveness to reduce DNR accumulation, which could explain the broad substrate specificity of the MDR efflux pump system. The conditions to evaluate unidirectional fluxes of DNR across the plasma membrane in cells with active P-glycoprotein are defined. An efflux mechanism which relies solely on pH-dependent drug trapping in a pH 5 endosomal compartment by a simple diffusion process followed by exocytosis, appears inadequate to account for the high rate of DNR efflux in EHR2/DNR+ cells.  相似文献   

5.
A series of new generation taxoids bearing a bulky group on different positions such as C-2, C-5, C-7, C-9, C-10 or C-14 were obtained by chemical modifications and biotransformation of taxuyunnanine C (1) and its analogs, 4, 5, and 10. Compounds 3, 5, 6, 8, and 9a showed significant activity toward calcein accumulation in MDR 2780AD cells. The most effective compound 9a with a cinnamoyloxy group at C-14 and a hydroxyl group at C-10 was actually efficient for the cellular accumulation of the anticancer agent, vincristine, in MDR 2780AD cells. The enhancing effects of 6 and 9a for taxol, adriamycin, and vincristine were at the same levels as those of verapamil toward MDR 2780AD cells. Thus, compounds 6 and 9a can modulate the multidrug resistance of cancer cells. The cytotoxicity (IC(50)) of the compounds was examined against human normal cell line, WI-38, and cancer model cell lines, VA-13 and HepG2. Since compounds 6 and 8 had no cytotoxicity, they were expected to be lead compounds of MDR cancer reversal agents. On the contrary, compounds 3, 5, and 9a showed cell growth inhibitory activity toward VA-13 and/or HepG2 as well as accumulation activity of calcein and/or vincristine in MDR 2780AD and they were expected to be lead compounds of new-type anticancer agents.  相似文献   

6.
Cells that acquire multidrug resistance (MDR) are characterized by a decreased accumulation of a variety of drugs. In addition, sequestration of drugs in intracellular vesicles has often been associated with MDR. However, the nature and role of intracellular vesicles in MDR are unclear. We addressed the relationship between MDR and vesicular anthracycline accumulation in the erythroleukemia cell line K562 and a drug-resistant counterpart K562/ADR that overexpresses P-glycoprotein. We used four anthracyclines (all of which are P-glycoprotein substrates): daunorubicin and idarubicin, which have good affinity for DNA and as weak bases can accumulate inside acidic compartments; hydroxyrubicin, which binds to DNA but is uncharged at physiological or acidic pH and thus cannot accumulate in acidic compartments; and WP900, an enantiomer of daunorubicin, which is a weak DNA binder but has the same pKa and lipophilicity as daunorubicin. The intrinsic fluorescence of anthracyclines allowed us to use macro- and micro-spectrofluorescence, flow cytometry, and confocal microscopy to characterize their nuclear or intravesicular accumulation in living cells. We found that vesicular accumulation of daunorubicin, WP900 and idarubicin, containing a basic 3'-amine was predominantly restricted to lysosomes in both cell lines, that pH regulation of acidic compartments was not defective in human K562 cells, and that vesicular drug accumulation was much more pronounced in the parental tumor cell line than in the multidrug-resistant cells. These results indicate that vesicular anthracycline sequestration does not contribute to the diminished sensitivity to anthracyclines in multidrug-resistant K562 cells.  相似文献   

7.
1,7-Deoxy-4-deacetylbaccatin III (12) and its five analogues 6-9, 13, and their oxetane ring opened derivatives 14, 16, and 17, which were synthesized from taxinine, showed significant activity as MDR reversal agent by the assay of the calcein accumulation toward MDR human ovarian cancer 2780AD cells. The most effective compound 12 in this assay is actually efficient for the recovery of cytotoxic activity of paclitaxel (taxol), adriamycin (ADM), and vincristine (VCR) toward MDR 2780AD cells at the same level toward parental 2780 cells. This activity of 12 is very interesting because baccatin III (4) has no such MDR reversal activity but has cytotoxic activity. The essential functional groups inducing such a difference in biological activity between 4 and 12 are 4alpha-acetoxyl for 4 and 4alpha-hydroxyl for 12. In seven compounds possessing MDR reversal activity, compound 12 is the most desirable compound for anti-MDR cancer reversal agent, because it has the highest accumulation ability of anticancer agent in MDR cancer cells and weak cytotoxic activity. Compounds 8 and 13 showed significant cytotoxic activity toward HepG2 and VA-13, respectively, as well as MDR reversal activity. They are expected to become lead compounds for new types of anticancer agent or anti-MDR cancer agent.  相似文献   

8.
Multidrug resistance (MDR), which was described for structurally and mechanistically unrelated anticancer agents, was modulated in vitro by a series of compounds which were of different chemical origin. In this situation, the selection of a correct assay dosage to study the MDR modulation mechanism was a problem. We developed a high-performance liquid chomatography (HPLC) method which enabled the simulataneous determination of three major cytotoxins (adriamycin, daunorubicin, vincristine) and two well-known modulators (S 9788, verapamil). This assay was fully validated and was used to follow, for the first time, the uptake and accumulation behaviour of adriamycin and S 9788 co-incubated with resistance and sensitive cell lines (KB-3-1; KB-A1).  相似文献   

9.
Chemoresistance remains a major obstacle to effective treatment in patients with ovarian cancer, and recently increasing evidences suggest that miRNAs are involved in drug-resistance. In this study, we investigated the role of miRNAs in regulating cisplatin resistance in ovarian cancer cell line and analyzed their possible mechanisms. We profiled miRNAs differentially expressed in cisplatin-resistant human ovarian cancer cell line A2780/DDP compared with parental A2780 cells using microarray. Four abnormally expressed miRNAs were selected (miR-146a,-130a, -374a and miR-182) for further studies. Their expression were verified by qRT-PCR. MiRNA mimics or inhibitor were transfected into A2780 and A2780/DDP cells and then drug sensitivity was analyzed by MTS array. RT-PCR and Western blot were carried out to examine the alteration of MDR1, PTEN gene expression. A total of 32 miRNAs were found to be differentially expressed in A2780/DDP cells. Among them, miR-146a was down-regulated and miR-130a,-374a,-182 were upregulated in A2780/DDP cells, which was verified by RT-PCR. MiR-130a and miR-374a mimics decreased the sensitivity of A2780 cells to cisplatin, reversely, their inhibitors could resensitize A2780/DDP cells. Furthermore, overexpression of miR-130a could increase the MDR1 mRNA and P-gp levels in A2780 and A2780/DDP cells, whereas knockdown of miR-130a could inhibit MDR1 gene expression and upregulate the PTEN protein expression .In a conclusion, the deregulation of miR-374a and miR-130a may be involved in the development and regulation of cisplatin resistance in ovarian cancer cells. This role of miR-130a may be achieved by regulating the MDR1 and PTEN gene expression.  相似文献   

10.
Anthracycline accumulation was evaluated by flow cytometry or radiolabeled drug assays in cells and cytoplasts (enucleated cells) prepared from parental and multidrug-resistant human K562 leukemia cells. Treatment with energy inhibitors, such as dinitrophenol (DNP) or sodium azide/deoxyglucose, led to a marked decrease in daunorubicin accumulation in parental cells and cytoplasts. Another ionophore, monensin, also caused a significant decrease in daunorubicin accumulation; however, ATPase inhibitors ouabain, vanadate, and N-ethylamaleimide had little or no effect. The lysosomatropic agents chloroquine and methylamine caused a moderate decrease in anthracycline accumulation. Fluorescence microscopy showed that the DNP-sensitive daunorubicin uptake occurred in a nonnuclear subcellular compartment. Studies using increasing daunorubicin concentrations demonstrated fluorescence quenching that occurred in the nonnuclear, DNP-sensitive compartment. The effect of inhibitors on the accumulation of rhodamine 123 and acridine orange strongly implicated lysosomes as the principal compartment of this inhibitable daunorubicin accumulation. Cytoplasts from P-glycoprotein containing multidrug-resistant K562 cells demonstrated a verapamil-reversible, decreased daunorubicin accumulation that was observed in resistant whole cells. Verapamil pretreatment of cytoplasts from resistant cells revealed the subcellular DNP-sensitive uptake present in parental cytoplasts. These studies demonstrate that cytoplasts are an effective means to study drug transport in mammalian cells without nuclear drug binding. Parental K562 cells and cytoplasts exhibit an energy-dependent accumulation of daunorubicin into cytoplasmic organelles that is also present in resistant cells and cytoplasts when P-glycoprotein mediated efflux is inhibited.  相似文献   

11.
CK2 is a pleiotropic protein kinase, which regulates many survival pathways and plays a global anti-apoptotic function. It is highly expressed in tumor cells, and is presently considered a promising therapeutic target. Among the many inhibitors available for this kinase, the recently developed CX-4945 and CX-5011 have proved to be very potent, selective and effective in inducing cell death in tumor cells; CX-4945 has recently entered clinical trials. However, no data are available on the efficacy of these compounds to overcome drug resistance, a major reasons of cancer therapy failure. Here we address this point, by studying their effects in several tumor cell lines, each available as variant R resistant to drug-induced apoptosis, and normal-sensitive variant S. We found that the inhibition of endogenous CK2 was very similar in S and R treated cells, with more than 50% CK2 activity reduction at sub-micromolar concentrations of CX-4945 and CX-5011. A consequent apoptotic response was induced both in S and R variants of each pairs. Moreover, the combined treatment of CX-4945 plus vinblastine was able to sensitize to vinblastine R cells that are otherwise almost insensitive to this conventional antitumor drug. Consistently, doxorubicin accumulation in multidrug resistant (MDR) cells was greatly increased by CX-4945.In summary, we demonstrated that all the R variants are sensitive to CX-4945 and CX-5011; since some of the treated R lines express the extrusion pump Pgp, often responsible of the MDR phenotype, we can also conclude that the two inhibitors can successfully overcome the MDR phenomenon.  相似文献   

12.
An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2)(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.  相似文献   

13.
Human immunodeficiency virus I-induced expression of P-glycoprotein   总被引:1,自引:0,他引:1  
Because prolonged treatment of HIV infection with 3'-azido-3'-deoxythymidine (AZT) is associated with in vitro resistance to AZT, we examined whether HIV could induce/amplify the expression of p-glycoprotein in infected cells resulting in reduced drug accumulation leading to reduced sensitivity to AZT. We show that both H9 (T cell line) and U937 (monocytic cell line) cells, upon infection with HIV, expressed increased levels of P-glycoprotein and accumulated significantly less AZT and daunorubicin as compared to uninfected cells. Sodium azide increased intracellular accumulation of daunorubicin in infected cells, suggesting a metabolically active drug efflux mechanism. Addition of cyclosporin A partially corrected intracellular drug accumulation in HIV infected cells. In addition, similar to multidrug resistant tumor cells, HIV-infected cells show depolarization of plasma membrane. Taken together, these data suggest that HIV-induced increased P-glycoprotein expression could be one of the mechanisms for reduced intracellular accumulation of antiviral agents and resistance to AZT and perhaps to other anti-retroviral agents.  相似文献   

14.
Intracellular traffic of human P-glycoprotein (P-gp), a membrane transporter responsible for multidrug resistance in cancer chemotherapy, was investigated using a P-gp and enhanced green fluorescent fusion protein (P-gp-EGFP) in human breast cancer MCF-7 cells. The stably expressed P-gp-EGFP from a clonal cell population was functional as a drug efflux pump, as demonstrated by the inhibition of daunorubicin accumulation and the conferring of resistance of the cells to colchicine and daunorubicin. Colocalization experiments demonstrated that a small fraction of the total P-gp-EGFP expressed was localized intracellularly and was present in early endosome and lysosome compartments. P-gp-EGFP traffic was shown to occur via early endosome transport to the plasma membrane. Subsequent movement of P-gp-EGFP away from the plasma membrane occurred by endocytosis to the early endosome and lysosome. The component of the cytoskeleton responsible for P-gp-EGFP traffic was demonstrated to be actin rather than microtubules. In functional studies it was shown that in parallel with the interruption of the traffic of P-gp-EGFP, cellular accumulation of the P-gp substrate daunorubicin was increased after cells were treated with actin inhibitors, and cell proliferation was inhibited to a greater extent than in the presence of daunorubicin alone. The actin dependence of P-gp traffic and the parallel changes in cytotoxic drug accumulation demonstrated in this study delineates the pathways of P-gp traffic and may provide a new approach to overcoming multidrug resistance in cancer chemotherapy. protein traffic; drug resistance in cancer; daunorubicin  相似文献   

15.
ObjectiveMultidrug resistance (MDR) is the major barrier to the successful treatment of chemotherapy. Compounds from nature products working as MDR sensitizers provided new treatment strategies for chemo-resistant cancers patients.MethodsWe investigated the reversal effects of nuciferine (NF), an alkaloid from Nelumbo nucifera and Nymphaea caerulea, on the paclitaxel (PTX) resistance ABCB1-overexpressing cancer in vitro and in vivo, and explored the underlying mechanism by evaluating drug sensitivity, cell cycle perturbations, intracellular accumulation, function and protein expression of efflux transporters as well as molecular signaling involved in governing transporters expression and development of MDR in cancer.ResultsNF overcomes the resistance of chemotherapeutic agents included PTX, doxorubicin (DOX), docetaxel, and daunorubicin to HCT-8/T and A549/T cancer cells. Notably, NF suppressed the colony formation of MDR cells in vitro and the tumor growth in A549/T xenograft mice in vivo, which demonstrated a very strong synergetic cytotoxic effect between NF and PTX as combination index (CI) (CI<0.1) indicated. Furthermore, NF increased the intracellular accumulation of P-gp substrates included DOX and Rho123 in the MDR cells and inhibited verapamil-stimulated ATPase activity. Mechanistically, inhibition of PI3K/AKT/ERK pathways by NF suppressed the activation of Nrf2 and HIF-1α, and further reduced the expression of P-gp and BCRP, contributing to the sensitizing effects of NF against MDR in cancer.ConclusionThis novel finding provides a promising treatment strategy for overcoming MDR and improving the efficiency of chemotherapy by using a multiple-targets MDR sensitizer NF.  相似文献   

16.
One of the important pathways of resistance to anthracyclines is governed by elevated levels of glutathione (GSH) in cancer cells. Resistant cells having elevated levels of GSH show higher expression of multidrug-resistant protein (MRP); the activity of glutathione S-transferases (GSTs) group of enzymes have also been found to be higher in some drug-resistant cells. The general mechanism in this type of resistance seems to be the formation of conjugates enzymatically by GSTs, and subsequent efflux by active transport through MRP (MRP1-MRP9). MRPs act as drug efflux pump and can also co-transport drugs like doxorubicin (Dox) with GSH. Depletion of GSH in resistant neoplastic cells may possibly sensitize such cells, and thus overcome multidrug resistance (MDR). A number of resistance modifying agents (RMA) like DL-buthionine (S, R) sulfoxamine (BSO) and ethacrynic acid (EA) moderately modulate resistance by acting as a GSH-depleting agent. As most of the GSH-depleting agents have dose-related toxicity, development of non-toxic GSH-depleting agent has immense importance in overcoming MDR. The present study describes the resistance reversal potentiality of novel copper complex, viz., copper N-(2-hydroxy acetophenone) glycinate (CuNG) developed by us in Dox-resistant Ehrlich ascites carcinoma (EAC/Dox) cells. CuNG depletes GSH in resistant (EAC/Dox) cells possibly by forming conjugate with it. Depletion of GSH results in higher Dox accumulation that may lead to enhanced rate of apoptosis in EAC/Dox cells. In vivo studies with male Swiss albino mice bearing ascitic growth of EAC/Dox showed tremendous increase in life span (treated/control, T/C = 453%) for the treated group with apparent regression of tumor. Resistance to Dox in EAC/Dox cells is associated with over expression of GST-P1, GST-M1 (enzymes involved in phase II detoxification) and MRP1 (a transmembrane ATPase efflux pump for monoglutathionyl conjugates of xenobiotics). CuNG causes down regulation of all these three proteins in EAC/Dox cells. The effect of CuNG as RMA is better than BSO in many aspects.  相似文献   

17.
Some organic cations are known to be electrophoretically imported into bacterial cells and actively extruded from these cells by multidrug resistance (MDR) pumps. We have studied penetration of plant antimicrobial agents berberine and palmatine and synthetic antiseptic benzalkonium chloride through black planar phospholipid membrane (BLM) and membrane of Staphylococcus aureus cells. Gradients of these cations across BLM generated an electric potential difference. Penetrating anion tetraphenyl borate and phloretin (a plant substance decreasing membrane dipole potential) stimulated this effect. Under optimal conditions, the magnitude of the electric potential was close to theoretical, that is, 60 mV/10-fold cation gradient. Berberine accumulated in S. aureus cells as shown by direct measurement of berberine with a berberine-sensitive electrode. The berberine accumulation was prevented by protonophore CCCP and was stimulated by mutation in the MDR pump NorA. It is concluded that the plant alkaloids and benzalkonium are penetrating cations and substrates of an MDR pump.  相似文献   

18.
Multidrug resistant (MDR) 2780AD human ovarian carcinoma cells were loaded with the fluorescent anticancer agent daunomycin (DN). Fluorescence anisotropy was lower than for corresponding A2780 wild-type cells, indicating that DN was less rigidly bound than in the wild-type cells. Average fluorescence quenching of DN was lower for 2780AD cells. Data were fitted into a model with a highly quenched fraction (fraction A), corresponding to DN intercalated in DNA, and an unquenched fraction (fraction B). The ratio A/B was one order of magnitude lower for the MDR cells than for the wild-type cells. Two other MDR cell lines were investigated and low A/B ratios were found in both cases. Thus, evidence has been provided that in MDR cells the DNA-bound fraction is relatively low and that more free DN is present, for example in acidic vesicles.  相似文献   

19.
15-Deoxy-delta-12,14-prostaglandin-J(2) (15d-PGJ(2)), an arachidonic metabolite and a natural PPARγ agonist, is known to induce apoptosis in tumor cells. In this study, we investigated new therapeutic potentials of 15d-PGJ(2) by determining its anticancer effects in wild-type and doxorubicin-resistant ovarian carcinoma cells. Despite high expression of resistance-inducing genes like MDR1, Bcl2 and Bcl-xl, 15d-PGJ(2) strongly induced apoptosis in doxorubicin-resistant (A2780/AD) cells similar to the wild-type (A2780). This was found to be related to caspase-3/7- and NF-κB pathways but not to its PPARγ agonistic activity. 15d-PGJ(2) also was able to reduce the doxorubicin resistance of A2780/AD cells at low doses as confirmed by the inhibition of gene expression of MDR1 (p-glycoprotein) and SIRT1 (a drug senescence gene). We also investigated effects of 15d-PGJ(2) on cell migration and transformation using a wound-healing assay and morphological analyses, respectively. We found that 15d-PGJ(2) inhibited migration most likely due to NF-κB inhibition and induced transformation of the round-shape A2780/AD cells into elongated epithelial cells due to HDAC1 inhibition. Using a 15d-PGJ(2) analog, we found the mechanism of action of these new activities of 15d-PGJ(2) on SIRT1 and HDAC1 gene expressions and enzyme activities. In conclusion, the present study demonstrates that 15d-PGJ(2) has a high therapeutic potential to kill drug-resistant tumor cells and, the newly described inhibitory effects of this cyclo-oxygenase product on SIRT1 and HDAC will provide new opportunities for cancer therapeutics.  相似文献   

20.
Multidrug resistance (MDR) is the result of overexpression of membrane bound proteins that efflux chemotherapeutic drugs from the cells. Two proteins, P-glycoprotein (P-gp) and multidrug-resistance associated protein-1 (MRP-1) efflux chemotherapeutic agents out of the cancer cell that decrease intracellular drug accumulation, thereby decreasing the effectiveness of many chemotherapeutic agents. In the present study, the ethanolic extract of the roots of Stemona curtisii Hook. was tested for the potential ability to modulate the MDR phenotype and function of P-gp and MRP-1. The S. curtisii extract reversed the resistance to putative chemotherapeutic agents, including vinblastine, paclitaxel and colchicine of KB-V1 cells (MDR human cervical carcinoma with high P-gp expression) in a dose-dependent manner, but not in KB-3-1 cells (drug sensitive human cervical carcinoma, which lack P-gp expression). The root extract also increased the intracellular uptake and retention of (3)[H]-vinblastine in KB-V1 cells dose dependently. The extract did not influence MDR phenotype-mediated MRP-1 in MRP1-HEK293 (human embryonic kidney cells stably transfected with pcDNA3.1-MRP1-H10 which show high MRP-1 expression) and pcDNA3.1-HEK293 (wild type). In summary, the S. curtisii root extract modulated P-gp activity but not MRP-1 activity. The result obtained from this study strongly indicated that S. curtisii extract may play an important role as a P-gp modulator as used in vitro and may be effective in the treatment of multidrug-resistant cancers. The purified form of the active components of S. curtisii extract should be investigated in more details in order to explain the molecular mechanisms involved in P-gp modulation. This is the first report of new biological activity in this plant, which could be a potential source of a new chemosensitizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号