首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maeda K  Finnie C  Svensson B 《Proteomics》2005,5(6):1634-1644
Using thiol-specific fluorescence labelling, over 30 putative target proteins of thioredoxin h with diverse structures and functions have been identified in seeds of barley and other plants. To gain insight at the structural level into the specificity of target protein reduction by thioredoxin h, thioredoxin h-reducible disulphide bonds in individual target proteins are identified using a novel strategy based on differential alkylation of cysteine thiol groups by iodoacetamide and 4-vinylpyridine. This method enables the accessible cysteine side chains in the thiol form (carbamidomethylated) to be distinguished from those inaccessible or disulphide bound form (pyridylethylated) according to the mass difference in the peptide mass maps obtained by matrix-assistend laser desorption/ionisation-time of flight mass spectrometry. Using this approach, in vitro reduction of disulphides in recombinant barley alpha-amylase/subtilisin inhibitor (BASI) by barley thioredoxin h isoform 1 was analysed. Furthermore, the method was coupled with two-dimensional electrophoresis for convenient thioredoxin h-reducible disulphide identification in barley seed extracts without the need for protein purification or production of recombinant proteins. Mass shifts of 15 peptides, induced by treatment with thioredoxin h and differential alkylation, identified specific reduction of nine disulphides in BASI, four alpha-amylase/trypsin inhibitors and a protein of unknown function. Two specific disulphides, located structurally close to the alpha-amylase binding surfaces of BASI and alpha-amylase inhibitor BMAI-1 were demonstrated to be reduced to a particularly high extent. For the first time, specificity of thioredoxin h for particular disulphide bonds is demonstrated, providing a basis to study structural aspects of the recognition mechanism and regulation of target proteins.  相似文献   

2.
Ladenstein R  Ren B 《The FEBS journal》2006,273(18):4170-4185
Disulfide bonds are required for the stability and function of a large number of proteins. Recently, the results from genome analysis have suggested an important role for disulfide bonds concerning the structural stabilization of intracellular proteins from hyperthermophilic Archaea and Bacteria, contrary to the conventional view that structural disulfide bonds are rare in proteins from Archaea. A specific protein, known as protein disulfide oxidoreductase (PDO) is recognized as a potential key player in intracellular disulfide-shuffling in hyperthermophiles. The structure of this protein shows a combination of two thioredoxin-related units with low sequence identity which together, in tandem-like manner, form a closed protein domain. Each of these units contains a distinct CXXC active site motif. Due to their estimated conformational energies, both sites are likely to have different redox properties. The observed structural and functional characteristics suggest a relation to eukaryotic protein disulfide isomerase. Functional studies have revealed that both the archaeal and bacterial forms of this protein show oxidative and reductive activity and are able to isomerize protein disulfides. The physiological substrates and reduction systems, however, are to date unknown. The variety of active site disulfides found in PDOs from hyperthermophiles is puzzling. Nevertheless, the catalytic function of any PDO is expected to be correlated with the redox properties of its active site disulfides CXXC and with the distinct nature of its redox environment. The residues around the two active sites form two grooves on the protein surface. In analogy to a similar groove in thioredoxin, both grooves are suggested to constitute the substrate binding sites of PDO. The direct neighbourhood of the grooves and the different redox properties of both sites may favour sequential reactions in protein disulfide shuffling, like reduction followed by oxidation. A model for peptide binding by PDO is proposed to be derived from the analysis of crystal packing contacts mimicking substrate binding interactions. It is assumed, that PDO enzymes in hyperthermophilic Archaea and Bacteria may be part of a complex system involved in the maintenance of protein disulfide bonds. The regulation of disulfide bond formation may be dependent on a distinct interplay of thermodynamic and kinetic effects, including functional asymmetry and substrate-mediated protection of the active sites, in analogy to the situation in protein disulfide isomerase. Numerous questions related to the function of PDO enzymes in hyperthermophiles remain unanswered to date, but can probably successfully be studied by a number of approaches, such as first-line genetic and in vivo studies.  相似文献   

3.
Thioredoxins and glutaredoxins as facilitators of protein folding   总被引:3,自引:0,他引:3  
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.  相似文献   

4.
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.  相似文献   

5.
Subunit B8 from ubiquinone oxidoreductase (complex I) (CI-B8) is one of several nuclear-encoded supernumerary subunits that are not present in bacterial complex I. Its solution structure shows a thioredoxin fold with highest similarities to the human thioredoxin mutant C73S and thioredoxin 2 from Anabeana sp. Interestingly, these proteins contain active sites in the same area, where the disulfide bond of oxidized CI-B8 is located. The redox potential of this disulfide bond is -251.6 mV, comparing well to that of disulfides in other thioredoxin-like proteins. Analysis of the structure reveals a surface area that is exclusively composed of highly conserved residues and thus most likely a subunit interaction site within complex I.  相似文献   

6.
We report a detailed classification of disulfide patterns to further understand the role of disulfides in protein structure and function. The classification is applied to a unique searchable database of disulfide patterns derived from the SwissProt and Pfam databases. The disulfide database contains seven times the number of publicly available disulfide annotations. Each disulfide pattern in the database captures the topology and cysteine spacing of a protein domain. We have clustered the domains by their disulfide patterns and visualized the results using a novel representation termed the "classification wheel." The classification is applied to 40,620 protein domains with 2-10 disulfides. The effectiveness of the classification is evaluated by determining the extent to which proteins of similar structure and function are grouped together through comparison with the SCOP and Pfam databases, respectively. In general, proteins with similar disulfide patterns have similar structure and function, even in cases of low sequence similarity, and we illustrate this with specific examples. Using a measure of disulfide topology complexity, we find that there is a predominance of less complex topologies. We also explored the importance of loss or addition of disulfides to protein structure and function by linking classification wheels through disulfide subpattern comparisons. This classification, when coupled with our disulfide database, will serve as a useful resource for searching and comparing disulfide patterns, and understanding their role in protein structure, folding, and stability. Proteins in the disulfide clusters that do not contain structural information are prime candidates for structural genomics initiatives, because they may correspond to novel structures.  相似文献   

7.
The Chlamydia family of human pathogens uses outer envelope proteins that are highly cross-linked by disulfide bonds but nevertheless keeps an unusually high number of unpaired cysteines in its secreted proteins. To gain insight into chlamydial disulfide bond catalysis, the structure, function, and substrate interaction of a novel periplasmic oxidoreductase, termed DsbH, were determined. The structure of DsbH, its redox potential of -269 mV, and its functional properties are similar to thioredoxin and the C-terminal domain of DsbD, i.e. characteristic of a disulfide reductase. As compared with these proteins, the two central residues of the DsbH catalytic motif (CMWC) shield the catalytic disulfide bond and are selectively perturbed by a peptide ligand. This shows that these oxidoreductase family characteristic residues are not only important in determining the redox potential of the catalytic disulfide bond but also in influencing substrate interactions. For DsbH, three functional roles are conceivable; that is, reducing intermolecular disulfides between proteins and small molecules, keeping a specific subset of exported proteins reduced, or maintaining the periplasm of Chlamydia in a generally reducing state.  相似文献   

8.
Thioredoxin functions in nearly all organisms as the major thiol-disulfide oxidoreductase within the cytosol. Its prime purpose is to maintain cysteine-containing proteins in the reduced state by converting intramolecular disulfide bonds into dithiols in a disulfide exchange reaction. Thioredoxin has been reported to contribute to a wide variety of physiological functions by interacting with specific sets of substrates in different cell types. To investigate the function of the essential thioredoxin A (TrxA) in the low-GC Gram-positive bacterium Bacillus subtilis, we purified wild-type TrxA and three mutant TrxA proteins that lack either one or both of the two cysteine residues in the CxxC active site. The pure proteins were used for substrate-binding studies known as “mixed disulfide fishing” in which covalent disulfide-bonded reaction intermediates can be visualized. An unprecedented finding is that both active-site cysteine residues can form mixed disulfides with substrate proteins when the other active-site cysteine is absent, but only the N-terminal active-site cysteine forms stable interactions. A second novelty is that both single-cysteine mutant TrxA proteins form stable homodimers due to thiol oxidation of the remaining active-site cysteine residue. To investigate whether these dimers resemble mixed enzyme-substrate disulfides, the structure of the most abundant dimer, C32S, was characterized by X-ray crystallography. This yielded a high-resolution (1.5Å) X-ray crystallographic structure of a thioredoxin homodimer from a low-GC Gram-positive bacterium. The C32S TrxA dimer can be regarded as a mixed disulfide reaction intermediate of thioredoxin, which reveals the diversity of thioredoxin/substrate-binding modes.  相似文献   

9.
Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz-type trypsin inhibitor family of the beta-trefoil fold proteins. Diverse approaches including site-directed mutagenesis, hybrid constructions, and crystallography have been used to characterise the structures and contact residues in the AMY2/BASI complex. The three-dimensional structure of the AMY2/BASI complex is characterised by a completely hydrated Ca2+ situated at the protein interface that connects the three catalytic carboxyl groups in AMY2 with side chains in BASI via water molecules. Using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), we have recently demonstrated Ca2+-modulated kinetics of the AMY2/BASI interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors.  相似文献   

10.
We have demonstrated that calf liver protein disulfide-isomerase (Mr 57,000) is a substrate for calf thymus thioredoxin reductase and catalyzes NADPH-dependent insulin disulfide reduction. This reaction can be used as a simple assay for protein disulfide-isomerase during purification in place of the classical method of reactivation of incorrectly oxidized ribonuclease A. Protein disulfide-isomerase contains two redox-active disulfides/molecule which were reduced by NADPH and calf thioredoxin reductase (Km approximately 35 microM). The isomerase was a poor substrate for NADPH and Escherichia coli thioredoxin reductase, but the addition of E. coli thioredoxin resulted in rapid reduction of two disulfides/molecule. Tryptophan fluorescence spectra were shown to monitor the redox state of protein disulfide-isomerase. Fluorescence measurements demonstrated that thioredoxin--(SH)2 reduced the disulfides of the isomerase and allowed the kinetics of the reaction to be followed; the reaction was also catalyzed by calf thioredoxin reductase. Equilibrium measurements showed that the apparent redox potential of the active site disulfide/dithiols of the thioredoxin domains of protein disulfide-isomerase was about 30 mV higher than the disulfide/dithiol of E. coli thioredoxin. Consistent with this, experiments using dithiothreitol or NADPH and thioredoxin reductase-dependent reduction and precipitation of insulin demonstrated differences between protein disulfide-isomerase and thioredoxin, thioredoxin being a better disulfide reductase but less efficient isomerase. Protein disulfide-isomerase is thus a high molecular weight member of the thioredoxin system, able to interact with both mammalian NADPH-thioredoxin reductase and reduced thioredoxin. This may be important for nascent protein disulfide formation and other thiol-dependent redox reactions in cells.  相似文献   

11.
The protein disulfide isomerase (PDI)-related protein Wind is essential in Drosophila melanogaster, and is required for correct targeting of Pipe, an essential Golgi transmembrane 2-O-sulfotransferase. Apart from a thioredoxin fold domain present in all PDI proteins, Wind also has a unique C-terminal D-domain found only in PDI-D proteins. Here, we show that Pipe processing requires dimeric Wind, which interacts directly with the soluble domain of Pipe in vitro, and we map an essential substrate binding site in Wind to the vicinity of an exposed cluster of tyrosines within the thioredoxin fold domain. In vitro, binding occurs to multiple sites within the Pipe polypeptide and shows specificity for two consecutive aromatic residues. A second site in Wind, formed by a cluster of residues within the D-domain, is likewise required for substrate processing. This domain, expressed separately, impairs Pipe processing by the full-length Wind protein, indicating competitive binding to substrate. Our data represent the most accurate map of a peptide binding site in a PDI-related protein available to date and directly show peptide specificity for a naturally occurring substrate.  相似文献   

12.
The oxidase DsbA folds a protein with a nonconsecutive disulfide   总被引:3,自引:0,他引:3  
One of the last unsolved problems of molecular biology is how the sequential amino acid information leads to a functional protein. Correct disulfide formation within a protein is hereby essential. We present periplasmic ribonuclease I (RNase I) from Escherichia coli as a new endogenous substrate for the study of oxidative protein folding. One of its four disulfides is between nonconsecutive cysteines. In general view, the folding of proteins with nonconsecutive disulfides requires the protein disulfide isomerase DsbC. In contrast, our study with RNase I shows that DsbA is a sufficient catalyst for correct disulfide formation in vivo and in vitro. DsbA is therefore more specific than generally assumed. Further, we show that the redox potential of the periplasm depends on the presence of glutathione and the Dsb proteins to maintain it at-165 mV. We determined the influence of this redox potential on the folding of RNase I. Under the more oxidizing conditions of dsb(-) strains, DsbC becomes necessary to correct non-native disulfides, but it cannot substitute for DsbA. Altogether, DsbA folds a protein with a nonconsecutive disulfide as long as no incorrect disulfides are formed.  相似文献   

13.
Present in virtually every species, thioredoxins catalyze disulfide/dithiol exchange with various substrate proteins. While the human genome contains a single thioredoxin gene, plant thioredoxins are a complex protein family. A total of 19 different thioredoxin genes in six subfamilies has emerged from analysis of the Arabidopsis thaliana genome. Some function specifically in mitochondrial and chloroplast redox signaling processes, but target substrates for a group of eight thioredoxin proteins comprising the h subfamily are largely uncharacterized. In the course of a structural genomics effort directed at the recently completed A. thaliana genome, we determined the structure of thioredoxin h1 (At3g51030.1) in the oxidized state. The structure, defined by 1637 NMR-derived distance and torsion angle constraints, displays the conserved thioredoxin fold, consisting of a five-stranded beta-sheet flanked by four helices. Redox-dependent chemical shift perturbations mapped primarily to the conserved WCGPC active-site sequence and other nearby residues, but distant regions of the C-terminal helix were also affected by reduction of the active-site disulfide. Comparisons of the oxidized A. thaliana thioredoxin h1 structure with an h-type thioredoxin from poplar in the reduced state revealed structural differences in the C-terminal helix but no major changes in the active site conformation.  相似文献   

14.
The bacterial Rcs phosphorelay is a stress-induced defense mechanism that controls the expression of numerous genes, including those for capsular polysaccharides, motility, and virulence factors. It is a complex multicomponent system that includes the histidine kinase (RcsC) and the response regulator (RcsB) and also auxiliary proteins such as RcsF. RcsF is an outer membrane lipoprotein that transmits signals from the cell surface to RcsC. The physiological signals that activate RcsF and how RcsF interacts with RcsC remain unknown. Here, we report the three-dimensional structure of RcsF. The fold of the protein is characterized by the presence of a central 4-stranded β sheet, which is conserved in several other proteins, including the copper-binding domain of the amyloid precursor protein. RcsF, which contains four conserved cysteine residues, presents two nonconsecutive disulfides between Cys(74) and Cys(118) and between Cys(109) and Cys(124), respectively. These two disulfides are not functionally equivalent; the Cys(109)-Cys(124) disulfide is particularly important for the assembly of an active RcsF. Moreover, we show that formation of the nonconsecutive disulfides of RcsF depends on the periplasmic disulfide isomerase DsbC. We trapped RcsF in a mixed disulfide complex with DsbC, and we show that deletion of dsbC prevents the activation of the Rcs phosphorelay by signals that function through RcsF. The three-dimensional structure of RcsF provides the structural basis to understand how this protein triggers the Rcs signaling cascade.  相似文献   

15.
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been ascribed to a new family of protein disulfide oxidoreductases (PDOs). We report on the characterization of SsPDO, isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. SsPDO was cloned and expressed in Escherichia coli. We revealed that SsPDO is the substrate of a thioredoxin reductase in S. solfataricus (K(M) 0.3 microm) and not thioredoxins (TrxA1 and TrxA2). SsPDO/S. solfataricus thioredoxin reductase constitute a new thioredoxin system in aerobic thermophilic archaea. While redox (reductase, oxidative and isomerase) activities of SsPDO point to its central role in the biochemistry of cytoplasmic disulfide bonds, chaperone activities also on an endogenous substrate suggest a potential role in the stabilization of intracellular proteins. Northern and western analysis have been performed in order to analyze the response to the oxidative stress.  相似文献   

16.
Thioredoxin from the cyanobacterium Anabaena 7119 serves as electron donor to ribonucleotide reductase and as a protein disulfide reductase. This small, heat-stable protein was found to have structural and functional similarities to thioredoxins from both bacterial and mammalian sources. We here report the complete primary structure of Anabaena thioredoxin. The structure was determined by analysis of peptides obtained after cleavage with cyanogen bromide, Staphylococcus aureus protease, and trypsin. The protein consists of 106 residues with the following amino acid sequence: Ser-Ala-Ala-Ala-Gln-Val-Thr-Asp- Ser-Thr-Phe-Lys-Gln-Glu-Val-Leu-Asp-Ser-Asp-Val-Pro-Val-leu-Val-Asp-Phe- Trp-Ala-Pro-Trp-Cys-Gly-Pro-Cys-Arg-Met-Val-Ala-Pro-Val-Val-Asp-Glu- Ile-Ala-Gln-Gln-Tyr-Glu-Gly-Lys-Ile-Lys-Val-Val-Lys-Val-Asn-Thr-Asp- Glu-Asn-Pro-Gln-Val-Ala-Ser-Gln-Tyr-Gly-Ile-Arg-Ser-Ile-Pro-Thr-Leu- Met-Ile-Phe-Lys-Gly-Gly-Gln-Lys-Val-Asp-Met-Val-Val-Gly-Ala-Val-Pro- Lys-Thr-Thr-Leu-Ser-Gln-Thr-Leu-Glu-Lys-His-Leu. The sequence of Anabaena thioredoxin shows a definite homology to the protein from Escherichia coli, with 49% residue identities occurring in the proteins when aligned at the active site disulfide.  相似文献   

17.
To understand structural and thermodynamic features of disulfides within an α‐helix, a non‐redundant dataset comprising of 5025 polypeptide chains containing 2311 disulfides was examined. Thirty‐five examples were found of intrahelical disulfides involving a CXXC motif between the N‐Cap and third helical positions. GLY and PRO were the most common amino acids at positions 1 and 2, respectively. The N‐Cap residue for disulfide bonded CXXC motifs had average (?,ψ) values of (?112 ± 25.2°, 106 ± 25.4°). To further explore conformational requirements for intrahelical disulfides, CYS pairs were introduced at positions N‐Cap‐3; 1,4; 7,10 in two helices of an Escherichia coli thioredoxin mutant lacking its active site disulfide (nSS Trx). In both helices, disulfides formed spontaneously during purification only at positions N‐Cap‐3. Mutant stabilities were characterized by chemical denaturation studies (in both oxidized and reduced states) and differential scanning calorimetry (oxidized state only). All oxidized as well as reduced mutants were destabilized relative to nSS Trx. All mutants were redox active, but showed decreased activity relative to wild‐type thioredoxin. Such engineered disulfides can be used to probe helix start sites in proteins of unknown structure and to introduce redox activity into proteins. Conversely, a protein with CYS residues at positions N‐Cap and 3 of an α‐helix is likely to have redox activity. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox‐active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox‐active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox‐active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox‐activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.  相似文献   

19.
The U5 small ribonucleoprotein particle (snRNP) contains various proteins involved in catalytic activities mediating conformational rearrangements of the spliceosome. We have isolated and characterized the evolutionarily highly conserved human U5 snRNP-specific protein U5-15kD. The crystal structure of U5-15kD determined at 1.4 A resolution revealed a thioredoxin-like fold and represents the first structure of a U5 snRNP-specific protein known so far. With respect to human thioredoxin the U5-15kD protein contains 37 additional residues causing structural changes which most likely form putative binding sites for other spliceosomal proteins or RNA. Moreover, a novel intramolecular disulfide bond replaces the canonical one found in the thioredoxin family. Even though U5-15kD appears to lack protein disulfide isomerase activity, it is strictly required for pre-mRNA splicing in vivo as we demonstrate by genetic depletion of its ortholog in Saccharomyces cerevisiae. Our data suggest that the previously reported involvement of its Schizosaccharomyces pombe ortholog Dim1p in cell cycle regulation is a consequence of its essential role in pre-mRNA splicing.  相似文献   

20.
秦童  黄震 《植物学报》2019,54(1):119-132
硫氧还蛋白(Trx)属于巯基-二硫键氧化还原酶家族, 通过作用于底物蛋白侧链2个半胱氨酸残基之间的二硫键(还原、异构和转移)来调控胞内蛋白的结构和功能。叶绿体Trx系统包括Trx及Trx类似蛋白、铁氧还蛋白(Fd)依赖的硫氧还蛋白还原酶(FTR)和还原型烟酰腺嘌呤二核苷磷酸(NADPH)依赖的硫氧还蛋白还原酶C (NTRC)。除了基质蛋白酶类活性变化及叶绿体蛋白的转运受Trx系统调控之外, 在叶绿体中还存在1条跨类囊体膜的还原势传递途径, 把基质Trx的还原势经跨膜转运蛋白介导, 最终传递给类囊体腔蛋白。FTR和NTRC共同作用维持叶绿体的氧化还原平衡。该文对叶绿体硫氧还蛋白系统的调节机制进行了综述, 同时讨论了叶绿体硫氧还蛋白系统对维持植物光合效率的重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号