首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oogenesis in the urochordate, Oikopleura dioica, occurs in a large coenocyst in which vitellogenesis precedes oocyte selection in order to adapt oocyte production to nutrient conditions. The animal has expanded Cyclin-Dependant Kinase 1 (CDK1) and Cyclin B paralog complements, with several expressed during oogenesis. Here, we addressed functional redundancy and specialization of CDK1 and cyclin B paralogs during oogenesis and early embryogenesis through spatiotemporal analyses and knockdown assays. CDK1a translocated from organizing centres (OCs) to selected meiotic nuclei at the beginning of the P4 phase of oogenesis, and its knockdown impaired vitellogenesis, nurse nuclear dumping, and entry of nurse nuclei into apoptosis. CDK1d-Cyclin Ba translocated from OCs to selected meiotic nuclei in P4, drove meiosis resumption and promoted nuclear envelope breakdown (NEBD). CDK1d-Cyclin Ba was also involved in histone H3S28 phosphorylation on centromeres and meiotic spindle assembly through regulating Aurora B localization to centromeres during prometaphase I. In other studied species, Cyclin B3 commonly promotes anaphase entry, but we found O. dioica Cyclin B3a to be non-essential for anaphase entry during oogenic meiosis. Instead, Cyclin B3a contributed to meiotic spindle assembly though its loss could be compensated by Cyclin Ba.  相似文献   

2.
Kong WH  Yan S  Gu Z  Tso JK 《生理学报》2002,54(5):400-404
利用原位杂交和免疫组化等方法,研究兔精子发生过程中生精细胞cyclin B1 mRNA的表达和蛋白定位特点,结果显示,兔生精上皮中Cyclin B1 mRNA的主要分布在初级精母细胞中,直至圆形精子细胞仍然存在,于精子细胞的变态过程中逐渐消失,在伸长的精子细胞和精子中未检测出cyclin B1 mRNA,Cyclin B1蛋白在进入分裂期的精原细胞和精母细胞中表达,在圆形精子细胞和伸长的精子细胞中呈现大量的cyclin B1蛋白,上述结果表明,在兔精子发生过程中,cyclin B1 mRNA表达和蛋白定位具有发育阶段依赖性的特征。  相似文献   

3.
4.
5.
6.
7.
The increasing resistance of nasopharyngeal carcinoma to irradiation makes the exploration of effective radiosensitizers necessary. Tetrandrine is known to be an antitumor drug, but little is known regarding its radiosensitization effect on nasopharyngeal carcinoma. We investigated the effect of combined treatment of irradiation and maximum non-cytotoxic doses of tetrandrine on the nasopharyngeal carcinoma cell lines CNE1 and CNE2. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were assessed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The radiosensitization of cells receiving the maximum non-cytotoxic doses of tetrandrine was assessed by evaluating cell proliferation and DNA damage repair using MTT, clonogenic, comet assays and detection of caspase-3 and phosphorylated histone H2AX (γ-H2AX). The cell cycle was assessed by flow cytometry, and protein expression was detected by western blot analysis. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were 1.5 μmol/L and 1.8 μmol/L, respectively. When cells were exposed to irradiation and the maximum non-cytotoxic doses of tetrandrine, the survival fraction was decreased. DNA damage and γ-H2AX levels markedly increased. Moreover, tetrandrine abrogated the G2/M phase arrest caused by irradiation. Combined treatment with the maximum non-cytotoxic dose of tetrandrine and irradiation caused suppression of the phosphorylation of CDK1 and CDC25C and increase in the expression of cyclin B1. The study in vivo also showed that the maximum non-cytotoxic dose of tetrandrine could reduce tumor growth in xenograft tumor model. Our results suggest that the maximum non-cytotoxic dose of tetrandrine can enhance the radiosensitivity of CNE1 and CNE2 cells and that the underlying mechanism could be associated with abrogation of radiation-induced G2/M arrest via activation of the CDC25C/CDK1/Cyclin B1 pathway.  相似文献   

8.
The molecular mechanisms underlying oocyte maturation in the annelid polychaetes Arenicola marina and Arenicola defodiens were investigated. In both species, a hitherto unidentified hormone triggers synchronous and rapid transition from prophase to metaphase, a maturation process which can be easily reproduced in vitro. Activation of a roscovitine- and olomoucine-sensitive M-phase-specific histone, H1 kinase, occurs during oocyte maturation. Using affinity chromatography on immobilized p9CKShs1, we purified CDK1 and cyclin B from oocyte extracts prepared from both phases and both species. In prophase, CDK1 is present both as an inactive, but Thr161-phosphorylated monomer, and as an inactive (Tyr15-phosphorylated) heterodimer with cyclin B. Prophase to metaphase transition is associated with complete tyrosine dephosphorylation of the cyclin B-associated CDK1, with phosphorylation of cyclin B, and with dramatic activation of the kinase activity of the CDK1/cyclin B complex. We propose that Arenicola oocytes may provide an ideal model system to investigate the acquisition of the ability of oocytes to be fertilized that occurs as oocyte shift from prophase to metaphase, an important physiological event, probably regulated by active CDK1/cyclin B.  相似文献   

9.
Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that destabilizes cell cycle proteins, is activated by Cdh1 in post-mitotic neurons, where it regulates axonal growth, synaptic plasticity and survival. The APC/C-Cdh1 substrate, cyclin B1, has been found to accumulate in degenerating brain areas in Alzheimer's disease and stroke. This highlights the importance of elucidating cyclin B1 regulation by APC/C-Cdh1 in neurons under stress conditions relevant to neurological disease. Here, we report that stimulation of N-methyl-D-aspartate receptors (NMDARs) that occurs in neurodegenerative diseases promoted the accumulation of cyclin B1 in the nuclei of cortical neurons; this led the neurons to undergo apoptotic death. Moreover, we found that the Ser-40, Thr-121 and Ser-163 triple phosphorylation of Cdh1 by the cyclin-dependent kinase-5 (Cdk5)-p25 complex was necessary and sufficient for cyclin B1 stabilization and apoptotic death after NMDAR stimulation. These results reveal Cdh1 as a novel Cdk5 substrate that mediates cyclin B1 neuronal accumulation in excitotoxicity.  相似文献   

10.
Paclitaxel is a potential cancer chemotherapeutic agent for ovary, breast, and head and neck cancers; its effects on nasopharyngeal carcinoma (NPC) have not been reported previously. This study investigated the cytotoxic mechanism of paclitaxel in two NPC cell lines, NPC-TW01 and NPC-TW04. NPC cells treated with pacli-taxel showed convoluted nuclei, condensed chromatin and decreased cellular and nuclear volume, and also exhibited genomic DNA degradation into multiple oligonucleosomal fragments, suggesting that pacli-taxel induced apoptosis in these cells. The effects of paclitaxel on apoptosis-related proteins including Bcl-2, Bax and CDC 2 were also detected. Although the levels of Bcl-2 and Bax were not changed in NPC cells following treatment with 5 nM-1 μM of paclitaxel, phosphorylation of Bcl-2 was significantly observed in the cells treated with 1 μM of paclitaxel for 12 hours. In addition, cyclin B1-associated CDC 2 kinase was highly activated in the NPC cells exposed to paclitaxel even at low (5 nM) concentration, and this result is associated with the finding that low concentration of paclitaxel is able to induce apoptosis in NPC cells.  相似文献   

11.
We have isolated a novel serine/threonine kinase gene designated Gek1 from mouse primordial germ cell-derived embryonic germ cell. Gek1 is preferentially expressed in meiotic testicular germ cells and primordial germ cells. Gek1 mRNA is also detected in several other tissues, including hematopoietic organs in adult mice and central nervous system in embryos. The Gek1 cDNA encodes a protein with the consensus sequence of the catalytic domain of protein kinases in its N-terminal region. The deduced amino acid sequence of Gek1 in the kinase domain is related to those encoded by the Saccharomyces cerevisiae STE20, CDC15, and Drosophila melanogaster ninaC. The patterns of expression and the structural features of Gek1 suggest that the gene product is involved in signal transduction or nuclear division of germ cells and other proliferating cells. We also show that Gek1 locates on chromosome 11, near the wr locus, showing neuronal and reproductive defects. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
15.
Cyclin B, the regulatory subunit of maturation-promoting factor (MPF), comprises several subtypes that are presumed to confer different functions on MPF although no direct evidence has been provided to date. To clarify the difference in the roles of cyclins B1 and B2, we used frog (Rana japonica) oocytes in which MPF is formed only after progesterone stimulation because it is possible to produce oocytes containing either cyclin B1-MPF or cyclin B2-MPF by antisense RNA-mediated translational inhibition of each mRNA. Using this advantage, we investigated the functions of cyclins B1 and B2 and obtained the following results: (a) oocytes synthesizing cyclin B2-MPF underwent meiosis I and II with formation of a bipolar spindle at each metaphase; (b) oocytes synthesizing cyclin B1-MPF formed a monopolar spindle at metaphase I and extruded an abnormal polar body; and (c) both oocytes underwent germinal vesicle breakdown (GVBD) and chromosome condensation. Immunocytochemical observations also revealed continuous localization of cyclin B2 on the spindle during meiosis. These results provide evidence of the requirement of cyclin B2, but not cyclin B1, for organizing the bipolar spindle, though either cyclin B1 or B2 is redundant for inducing GVBD and chromosome condensation.  相似文献   

16.
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.  相似文献   

17.
The cell cycle is driven by the kinase activity of cyclin·cyclin-dependent kinase (CDK) complexes, which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as an interaction partner and a substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin-binding site in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inhibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, whereas it was induced by cell cycle arrest. We established a deletional mouse model that showed increased CDK2 activity in spleen with altered spleen architecture in Inca1(-/-) mice. Inca1(-/-) embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from acute lymphoid leukemia and acute myeloid leukemia patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control in vivo. Taken together, this study identifies a novel CDK inhibitor with reduced expression in acute myeloid and lymphoid leukemia. The molecular events that control the cell cycle occur in a sequential process to ensure a tight regulation, which is important for the survival of a cell and includes the detection and repair of genetic damage and the prevention of uncontrolled cell division.  相似文献   

18.
GL331, a new homologue of etoposide (VP-16), was developed to cope with the multiple drug resistance occurring in certain malignant tumours. We previously indicated that GL331, like VP-16 and other major cancer chemotherapeutic agents, induced apoptosis in a variety of human cancer cell lines including nasopharyngeal carcinoma (NPC) NPC-TW01 and NPC-TW04 cells. In this study, we further explored the effect of GL331 on the cell cycle progression of NPC cells. Flow cytometric analysis of DNA content was first used to demonstrate the ability of GL331 to induce cell growth arrest at S-G2 phase in most NPC cells. Besides acting as a topoisomerase II inhibitor, GL331 inhibited cellular cyclin B1-associated CDC 2 kinase activity 6 h after treatment, accounting partly at least for its induction of the cell cycle arrest. As with cyclin A, D1, E, CDK 2 and PCNA, the levels of cyclin B1 and CDC 2 proteins were not changed after GL331 treatment; however, the ability to form complex between cyclin B1 and CDC 2 was obviously affected in GL331-treated NPC cells, which associates with the inhibition of cyclin B1/CDC 2 kinase activity elicited by GL331. These data could provide more principal bases for future therapeutic application of this potential anti-cancer agent.  相似文献   

19.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   

20.
Epithelial-like Sertoli cells isolated from immature rat testis aggregate to form tubule-like structures when cultured on a monolayer of mesenchyme-derived peritubular cells. At the end of this morphogenetic process both cell types are separated by a basement membrane. In this study the gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells was examined using DD-RT-PCR. One of the isolated cDNA clones showed high homology to the cDNA encoding the basement membrane component entactin-1 (nidogen-1). Even though the entactin-1 (nidogen-1) gene is transcribed in peritubular cells, Sertoli cells, and in direct cocultures, the mRNA is translated only by the peritubular cells. No entactin-1 (nidogen-1) was detected in the Sertoli cells by Western blotting. Moreover, peritubular cell monocultures and cocultures showed the presence of one single band at 152 kDa in the supernatant, whereas in cell lysates two bands were detectable at 152 kDa and 150 kDa. Perturbation experiments using monoclonal antibodies directed against entactin-1 (nidogen-1) were performed with peritubular cells and Sertoli cells, respectively, and demonstrated loss of cell adhesion of the peritubular cells, while the Sertoli cells remained adherent. From these data we conclude that entactin-1 is exclusively produced and secreted by mesenchymal peritubular cells, and affects adhesion of peritubular cells in an autocrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号