首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mannan-binding lectin-associated serine protease (SP) (MASP)-1 and MASP-2 are modular SP and form complexes with mannan-binding lectin, the recognition molecule of the lectin pathway of the complement system. To characterize the enzymatic properties of these proteases we expressed their catalytic region, the C-terminal three domains, in Escherichia coli. Both enzymes autoactivated and cleaved synthetic oligopeptide substrates. In a competing oligopeptide substrate library assay, MASP-1 showed extreme Arg selectivity, whereas MASP-2 exhibited a less restricted, trypsin-like specificity. The enzymatic assays with complement components showed that cleavage of intact C3 by MASP-1 and MASP-2 was detectable, but was only approximately 0.1% of the previously reported efficiency of C3bBb, the alternative pathway C3-convertase. Both enzymes cleaved C3i 10- to 20-fold faster, but still at only approximately 1% of the efficiency of MASP-2 cleavage of C2. We believe that C3 is not the natural substrate of either enzyme. MASP-2 cleaved C2 and C4 at high rates. To determine the role of the individual domains in the catalytic region of MASP-2, the second complement control protein module together with the SP module and the SP module were also expressed and characterized. We demonstrated that the SP domain alone can autoactivate and cleave C2 as efficiently as the entire catalytic region, while the second complement control protein module is necessary for efficient C4 cleavage. This behavior strongly resembles C1s. Each MASP-1 and MASP-2 fragment reacted with C1-inhibitor, which completely blocked the enzymatic action of the enzymes. Nevertheless, relative rates of reaction with alpha-2-macroglobulin and C1-inhibitor suggest that alpha-2-macroglobulin may be a significant physiological inhibitor of MASP-1.  相似文献   

2.
The mannose-binding lectin associated-protease-3 (MASP-3) is a member of the lectin pathway of the complement system, a key component of human innate and active immunity. Mutations in MASP-3 have recently been found to be associated with Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome, a severe developmental disorder manifested by cleft palate, intellectual disability, and skeletal abnormalities. However, the molecular basis for MASP-3 function remains to be understood. Here we characterize the substrate specificity of MASP-3 by screening against a combinatorial peptide substrate library. Through this approach, we successfully identified a peptide substrate that was 20-fold more efficiently cleaved than any other identified to date. Furthermore, we demonstrated that mutant forms of the enzyme associated with 3MC syndrome were completely inactive against this substrate. To address the structural basis for this defect, we determined the 2.6-Å structure of the zymogen form of the G666E mutant of MASP-3. These data reveal that the mutation disrupts the active site and perturbs the position of the catalytic serine residue. Together, these insights into the function of MASP-3 reveal how a mutation in this enzyme causes it to be inactive and thus contribute to the 3MC syndrome.  相似文献   

3.
Mannan-binding lectin (MBL)-associated serine proteases-1 and 2 (MASP-1 and MASP-2) are homologous modular proteases that each interact with MBL, an oligomeric serum lectin involved in innate immunity. To precisely determine their substrate specificity, human MASP-1 and MASP-2, and fragments from their catalytic regions were expressed using a baculovirus/insect cells system. Recombinant MASP-2 displayed a rather wide, C1s-like esterolytic activity, and specifically cleaved complement proteins C2 and C4, with relative efficiencies 3- and 23-fold higher, respectively, than human C1s. MASP-2 also showed very weak C3 cleaving activity. Recombinant MASP-1 had a lower and more restricted esterolytic activity. It showed marginal activity toward C2 and C3, and no activity on C4. The enzymic activity of both MASP-1 and MASP-2 was specifically titrated by C1 inhibitor, and abolished at a 1:1 C1 inhibitor:protease ratio. Taken together with previous findings, these and other data strongly support the hypothesis that MASP-2 is the protease that, in association with MBL, triggers complement activation via the MBL pathway, through combined self-activation and proteolytic properties devoted to C1r and C1s in the C1 complex. In view of the very low activity of MASP-1 on C3 and C2, our data raise questions about the implication of this protease in complement activation.  相似文献   

4.
The Cucurbita maxima trypsin inhibitor CMTI-III molecule was used as a vehicle to design and synthesize a series of trypsin chromogenic substrates modified in position P1: Ac-Ala-Val-Abu-Pro-X-pNA, where X = Orn, Lys, Arg, Har, Arg(NO(2)), Cit, Hci, Phe(p-CN), Phe(p-NH(2)); pNA = p-nitroanilide. The most active compounds (as determined by specificity constant k(cat)/K(m)) were peptides with the Arg and Lys residues in the position discussed. Changes in the length and the decrease of the positive charge of the amino acid residue side chain in position P(1) resulted in the decrease or loss of the affinity towards bovine beta-trypsin. Among peptides containing amino acid residues with uncharged side chains in position P1, only one with p-cyano-l-Phe revealed activity. These results correspond well with trypsin inhibitory activity of CMTI-III analogues modified in the equivalent position, indicating the same type of interaction between position P1 of the substrate or inhibitor and S1 site specificity of trypsin.  相似文献   

5.
Human plasma kallikrein (huPK) is a proteinase that participates in several biological processes. Although various inhibitors control its activity, members of the Kazal family have not been identified as huPK inhibitors. In order to map the enzyme active site, we synthesized peptides based on the reactive site (PRILSPV) of a natural Kazal-type inhibitor found in Cayman plasma, which is not an huPK inhibitor. As expected, the leader peptide (Abz-SAPRILSPVQ-EDDnp) was not cleaved by huPK. Modifications to the leader peptide at P'1, P'3 and P'4 positions were made according to the sequence of a phage display-generated recombinant Kazal inhibitor (PYTLKWV) that presented huPK-binding ability. Novel peptides were identified as substrates for huPK and related enzymes. Both porcine pancreatic and human plasma kallikreins cleaved peptides at Arg or Lys bonds, whereas human pancreatic kallikrein cleaved bonds involving Arg or a pair of hydrophobic amino acid residues. Peptide hydrolysis by pancreatic kallikrein was not significantly altered by amino acid replacements. The peptide Abz-SAPRILSWVQ-EDDnp was the best substrate and a competitive inhibitor for huPK, indicating that Trp residue at the P'4 position is important for enzyme action.  相似文献   

6.
Substrate specificity of the Escherichia coli outer membrane protease OmpT   总被引:1,自引:0,他引:1  
OmpT is a surface protease of gram-negative bacteria that has been shown to cleave antimicrobial peptides, activate human plasminogen, and degrade some recombinant heterologous proteins. We have analyzed the substrate specificity of OmpT by two complementary substrate filamentous phage display methods: (i) in situ cleavage of phage that display protease-susceptible peptides by Escherichia coli expressing OmpT and (ii) in vitro cleavage of phage-displayed peptides using purified enzyme. Consistent with previous reports, OmpT was found to exhibit a virtual requirement for Arg in the P1 position and a slightly less stringent preference for this residue in the P1' position (P1 and P1' are the residues immediately prior to and following the scissile bond). Lys, Gly, and Val were also found in the P1' position. The most common residues in the P2' position were Val or Ala, and the P3 and P4 positions exhibited a preference for Trp or Arg. Synthetic peptides based upon sequences selected by bacteriophage display were cleaved very efficiently, with kcat/Km values up to 7.3 x 10(6) M(-1) s(-1). In contrast, a peptide corresponding to the cleavage site of human plasminogen was hydrolyzed with a kcat/Km almost 10(6)-fold lower. Overall, the results presented in this work indicate that in addition to the P1 and P1' positions, additional amino acids within a six-residue window (between P4 and P2') contribute to the binding of substrate polypeptides to the OmpT binding site.  相似文献   

7.
Beck ZQ  Lin YC  Elder JH 《Journal of virology》2001,75(19):9458-9469
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3' region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF/VVNGLVK-NH(2) (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2' position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1', FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2' subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1' subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF/VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVF Psi(CH(2)NH)VVNGL-NH(2.) This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.  相似文献   

8.
Mannan-binding lectin (MBL)-associated serine proteases (MASP-1, -2, and -3) are homologous modular proteases that each associate with MBL and L- and H-ficolins, which are oligomeric serum lectins involved in innate immunity. To investigate its physicochemical, interaction, and enzymatic properties, human MASP-3 was expressed in insect cells. Ultracentrifugation analysis indicated that rMASP-3 sedimented as a homodimer (s(20,w) = 6.2 +/- 0.1 S) in the presence of Ca(2+), and as a monomer (s(20,w) = 4.6 +/- 0.1 S) in EDTA. As shown by surface plasmon resonance spectroscopy, it associated with both MBL (K(D) = 2.6 nM) and L-ficolin (K(D) = 7.2 nM). The protease was produced in a single-chain, proenzyme form, but underwent slow activation upon prolonged storage at 4 degrees C, resulting from cleavage at the Arg(430)-Ile(431) activation site. Activation was prevented in the presence of protease inhibitors iodoacetamide and 1,10-phenanthroline but was not abolished upon substitution of Ala for the active site Ser(645) of MASP-3, indicating extrinsic proteolysis. In contrast, the corresponding mutations Ser(627)-->Ala in MASP-1 and Ser(618)-->Ala in MASP-2 stabilized the latter in their proenzyme form. Likewise, the MASP-1 and MASP-2 mutants were each activated by their active counterparts, but MASP-3 S645A was not. Activated MASP-3 did not react with C1 inhibitor; had no activity on complement proteins C2, C4, and C3; and only cleaved the N-carboxybenzyloxyglycine-L-arginine thiobenzyl ester substrate to a significant extent. Based on these observations, it is postulated that MASP-3 activation and control involve mechanisms that are different from those of MASP-1 and -2.  相似文献   

9.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

10.
Serum mannose-binding protein (MBP) neutralizes invading microorganisms by binding to cell surface carbohydrates and activating MBP-associated serine proteases-1, -2, and -3 (MASPs). MASP-2 subsequently cleaves complement components C2 and C4 to activate the complement cascade. To analyze the mechanisms of activation and substrate recognition by MASP-2, zymogen and activated forms have been produced, and MBP.MASP-2 complexes have been created. These preparations have been used to show that MBP modulates MASP-2 activity in two ways. First, MBP stimulates MASP-2 autoactivation by increasing the rate of autocatalysis when MBP.MASP-2 complexes bind to a glycan-coated surface. Second, MBP occludes accessory C4-binding sites on MASP-2 until activation occurs. Once these sites become exposed, MASP-2 binds to C4 while separate structural changes create a functional catalytic site able to cleave C4. Only activated MASP-2 binds to C2, suggesting that this substrate interacts only near the catalytic site and not at accessory sites. MASP-1 cleaves C2 almost as efficiently as MASP-2 does, but it does not cleave C4. Thus MASP-1 probably enhances complement activation triggered by MBP.MASP-2 complexes, but it cannot initiate activation itself.  相似文献   

11.
We report a systematic and detailed analysis of recombinant neurolysin (EC 3.4.24.16) specificity in parallel with thimet oligopeptidase (TOP, EC 3.4.24.15) using Bk sequence and its C- and N-terminal extensions as in human kininogen as motif for synthesis of internally quenched fluorescent substrates. The influence of the substrate size was investigated, and the longest peptide susceptible to TOP and neurolysin contains 17 amino acids. The specificities of both oligopeptidases to substrate sites P(4) to P(3)' were also characterized in great detail using seven series of peptides based on Abz-GFSPFRQ-EDDnp taken as reference substrate. Most of the peptides were hydrolyzed at the bond corresponding to P(4)-F(5) in the reference substrate and some of them were hydrolyzed at this bond or at F(2)-S(3) bond. No restricted specificity was found for P(1)' as found in thermolysin as well for P(1) substrate position, however the modifications at this position (P(1)) showed to have large influence on the catalytic constant and the best substrates for TOP contained at P(1), Phe, Ala, or Arg and for neurolysin Asn or Arg. Some amino acid residues have large influence on the K(m) constants independently of its position. On the basis of these results, we are hypothesizing that some amino acids of the substrates can bind to different sub-sites of the enzyme fitting P-F or F-S bond, which requires rapid interchange for the different forms of interaction and convenient conformations of the substrate in order to expose and fit the cleavage bonds in correct position for an efficient hydrolysis. Finally, this plasticity of interaction with the substrates can be an essential property for a class of cytosolic oligopeptidases that are candidates to participate in the selection of the peptides to be presented by the MHC class I.  相似文献   

12.
Escherichia coli outer-membrane endoprotease OmpT has suitable properties for processing fusion proteins to produce peptides and proteins. However, utilization of this protease for such production has been restricted due to its generally low cleavage efficiency at Arg (or Lys)-Xaa, where Xaa is a nonbasic N-terminal amino acid of a target polypeptide. The objective of this study was to generate a specific and efficient OmpT protease and to utilize it as a processing enzyme for producing various peptides and proteins by converting its substrate specificity. Since OmpT Asp(97) is proposed to interact with the P1' amino acid of its substrates, OmpT variants with variations at Asp(97) were constructed by replacing this amino acid with 19 natural amino acids to alter the cleavage specificity at Arg (P1)-Xaa (P1'). The variant OmpT that had a methionine at this position, but not the wild-type OmpT, efficiently cleaved a fusion protein containing the amino acid sequence -Arg-Arg-Arg-Ala-Arg downward arrow motilin, in which motilin is a model peptide with a phenylalanine at the N terminus. The OmpT variants with leucine and histidine at position 97 were useful in releasing human adrenocorticotropic hormone (1-24) (serine at the N terminus) and human calcitonin precursor (cysteine at the N terminus), respectively, from fusion proteins. Motilin was produced by this method and was purified up to 99.0% by two chromatographic steps; the yield was 160 mg/liter of culture. Our novel method in which the OmpT variants are used could be employed for production of various peptides and proteins.  相似文献   

13.
Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process.  相似文献   

14.
Proprotein convertases (PCs) are serine proteases containing a subtilisin-like catalytic domain that are involved in the conversion of hormone precursors into their active form. This study aims at designing small cyclic peptides that would specifically inhibit two members of this family of enzymes, namely, the neuroendocrine PC1/3 and the ubiquitously expressed furin. We studied peptide sequences related to the 18-residue loop identified as the active site of the 83 amino acid barley serine protease inhibitor 2 (BSPI-2). Peptides incorporating mutations at various positions in the sequence were synthesized on solid phase and purified by HPLC. Cyclization was achieved by the introduction of a disulfide bridge between the two Cys residues located at both the N- and C-terminal extremities. Peptides VIIA and VIIB incorporating P4Arg, P2Lys, P1Arg, and P2'Lys were the most potent inhibitors with K(i) around 4 microM for furin and around 0.5 microM for PC1/3. Whereas peptide VIIB behaved as a competitive inhibitor of furin, peptide VIIA acted as a noncompetitive one. However, all peptides were eventually cleaved after variable incubation times by PC1/3 or furin. To avoid this problem, we incorporated at the identified cleavage site a nonscissile aminomethylene bond (psi[CH(2)-NH]). Those pseudopeptides, in particular peptide VIID, were shown not to be cleaved and to inhibit potently furin. Conversely, they were not able to inhibit PC1/3 at all. Those results show the validity of this approach in designing new effective PC inhibitors showing a certain level of discrimination between PC1/3 and furin.  相似文献   

15.
We report the enzymatic properties and substrate specificity of human recombinant KLK3 in the presence of glycosaminoglycans (GAGs) and sodium citrate. This salt is highly concentrated in prostate and in its presence KLK3 had a similar hydrolytic efficiency as chymotrypsin. In contrast to the latter peptidase, KLK3 activated by sodium citrate efficiently hydrolyzed substrates containing R, H and P at the P1 position. Activated KLK3 also cleaved peptides derived from the bradykinin domain of human kininogen at the same sites as human kallikrein KLK1, but presented low kininogenase activity. Angiotensin I has several sites for hydrolysis by KLK3; however, it was cleaved only at the Y-I bond (DRVY↓IHPFHL). Sodium citrate modulated KLK3 conformation as observed by alterations to the intrinsic fluorescence of phenylalanines and tryptophans. Activated KLK3 was reversibly inhibited by Z-Pro-Prolinal and competitively inhibited by ortho-phenantroline. Together, these are noteworthy observations for the future design of specific non-peptide inhibitors of KLK3 and to find natural substrates.  相似文献   

16.
Escherichia coli outer-membrane endoprotease OmpT has suitable properties for processing fusion proteins to produce peptides and proteins. However, utilization of this protease for such production has been restricted due to its generally low cleavage efficiency at Arg (or Lys)-Xaa, where Xaa is a nonbasic N-terminal amino acid of a target polypeptide. The objective of this study was to generate a specific and efficient OmpT protease and to utilize it as a processing enzyme for producing various peptides and proteins by converting its substrate specificity. Since OmpT Asp97 is proposed to interact with the P1′ amino acid of its substrates, OmpT variants with variations at Asp97 were constructed by replacing this amino acid with 19 natural amino acids to alter the cleavage specificity at Arg (P1)-Xaa (P1′). The variant OmpT that had a methionine at this position, but not the wild-type OmpT, efficiently cleaved a fusion protein containing the amino acid sequence -Arg-Arg-Arg-Ala-Arg↓motilin, in which motilin is a model peptide with a phenylalanine at the N terminus. The OmpT variants with leucine and histidine at position 97 were useful in releasing human adrenocorticotropic hormone (1-24) (serine at the N terminus) and human calcitonin precursor (cysteine at the N terminus), respectively, from fusion proteins. Motilin was produced by this method and was purified up to 99.0% by two chromatographic steps; the yield was 160 mg/liter of culture. Our novel method in which the OmpT variants are used could be employed for production of various peptides and proteins.  相似文献   

17.
A novel method for assaying the substrate specificity of proteolytic enzymes has been developed utilizing ligand-enhanced lanthanide ion fluorescence. This approach was used to develop peptide libraries to probe substrate specificity in the prime sites of proteolytic enzymes. A positional scanning synthetic combinatorial library of fluorogenic peptides was synthesized and used to determine the extended prime site specificity of bovine -chymotrypsin. The enzyme showed a preference for Lys and Arg in the P1′ position, rather broad specificity in the P2′ position, and a slight Arg specificity in the P3′ position. The specificity profile of bovine -chymotrypsin agrees well with previously reported data, and the substrate library reported herein should provide valuable information about the prime site substrate specificities of other proteolytic enzymes as well. Furthermore, the continuous fluorogenic assay described may prove useful in analyzing the activity of other hydrolytic enzymes.  相似文献   

18.
The specificity of the p15 proteinase of myeloblastosis-associated virus (MAV) was tested with nonviral high molecular weight substrates and with synthetic peptides. Peptides with sequences spanning known cleavage sites in viral polyproteins of Rous sarcoma virus (RSV) and avian leukemia viruses, as well as in BSA and HSA, were synthesized, and the rate of their cleavage by the MAV proteinase was compared. Synthetic peptides require for successful cleavage at least 4 residues at the N-terminal side and 3 residues at the C-terminal side. The proteinase shows a preference for hydrophobic residues with bulky side chains (Met, Tyr, Phe) in P3, although Arg and Gln can also be accepted. Small hydrophobic residues are required in P2 and P2', and large hydrophobic residues (Tyr, Met, Phe/p-nitro-Phe) are preferred in both P1 and P1'. The difference between the specificity of the p15 proteinase and that of the HIV-1 proteinase mostly pertains to position P2' of the substrate, where bulkier side chains are accepted by the HIV-1 proteinase (Richards et al., 1990). A good chromogenic substrate for the MAV and RSV proteinases was developed and used to further characterize the MAV proteinase activity with respect to ionic strength and pH. The activity of the proteinase is strongly dependent on ionic strength and pH. Both the kcat and Km values contribute to a higher cleavage efficiency at higher salt concentrations and show a bell-shaped pH dependence curve with a sharp maximum at pH 5.5 (kcat) and 6.5 (Km).  相似文献   

19.
Endothelin-converting enzyme-1 (ECE-1) is a membrane-bound zinc metallopeptidase that is homologous to neprilysin in amino acid sequence. A major in vivo function of ECE-1 is the generation of endothelin-1, a potent vasoconstrictor, from big endothelin-1. ECE-1 is also potentially involved in the processing or degradation of other peptide hormones. In this study we have used substrates based on the sequence of the COOH-terminal half of big endothelin-1 to examine the subsite specificity of recombinant ECE-1. The big endothelin-1 [16-38] peptides were systematically varied at either position 21 (P(1)) or position 22 (P'(1)) and used in steady-state kinetic analyses of ECE-1. The results indicate that the S(1) pocket of ECE-1 is relatively nonselective, but that the S'(1) subsite of ECE-1 has a preference for large hydrophobic side chains. The peptidyl carboxydipeptidase activity of ECE-1 was also characterized, revealing that substrates with COOH-terminal carboxylates are highly preferred over the cognate amides and esters. A site-directed mutagenesis study was carried out to identify the active-site amino acid residues specifically involved in binding to the COOH-terminal carboxylate of substrates. The data indicate that Arg(133) of ECE-1, which corresponds to Arg(102) of neprilysin that has been identified as an active-site residue of neprilysin involved in binding to the free carboxylate of some substrate peptides, may not play the same role. However, the low activity observed for an ECE-1 Arg(726) mutant is consistent with a role for this arginine residue in the binding of substrates, a role which has been ascribed to arginine residues in both thermolysin (Arg(203)) and neprilysin (Arg(717)).  相似文献   

20.
A series of synthetic peptides representing authentic proteolytic cleavage sites of human rhinovirus type 14 were assayed as substrates for purified 3C protease. Competition cleavage assays were employed to determine the relative specificity constants (Kcat/Km) for substrates with sequences related to the viral 2C-3A cleavage site. Variable length peptides representing the 2C-3A cleavage site were cleaved with comparable efficiency. These studies defined a minimum substrate of 6 amino acids (TLFQ/GP), although retention of the residue at position P5 (ETLFQ/GP) resulted in a better substrate by an order of magnitude. Amino acid substitutions at position P5, P4, P1', or P2' indicated that the identity of the residue at position P5 was not critical, whereas substitutions at position P4, P1' or P2' resulted in substrates with Kcat/Km values varying over 2 orders of magnitude. In contrast to the 2C-3A cleavage site, small peptide derivatives representative of the 3A-3B cleavage site were relatively poor substrates, which suggested that residues flanking the minimum core sequence may influence susceptibility to cleavage. The 3C protease of rhinovirus type 14 was also capable of cleaving peptides representing comparable cleavage sites predicted for coxsackie B virus and poliovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号