首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial migration, which is a fundamental component of the ulcer healing process, is characterized by complex alterations in adhesion between cells and the extracellular matrix. Growth and motility factors involved in mucosal repair of the gastrointestinal tract seem to modulate these interactions in a coordinated fashion in order to reestablish functional and structural integrity of the mucosa. These findings may have important clinical implications for the treatment of ulcerative conditions of the gastrointestinal tract and lead to the development of specific drugs that promote mucosal healing by exploiting natural mechanisms of cell migration.  相似文献   

2.
A lot of physiological processes including cell proliferation, cell migration, and differentiation are regulated by intercellular and cell-matrix interaction. The misbalance of intercellular and stroma-epithelial interaction is one of main factor of initiation of different pathological processes. Nonhealing wounds (chronic inflammation) and adenocarcinomas, despite the different external features, have many general inner features: cell proliferation, survival, cell migration, differentiation induced by cocktail of different growth factors and cytokines which promote inflammation and angiogenesis. Various stroma components including extracellular matrix are active participants of wound healing and cancer growth. The changes of pl-integrins distribution and cytokine expression, TGFbeta in particular, influence the development of pathological processes. It is possible to consider these factors as potential pharmacological targets.  相似文献   

3.
The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.  相似文献   

4.
Regulation of angiogenesis by extracellular matrix   总被引:23,自引:0,他引:23  
During angiogenesis, endothelial cell growth, migration, and tube formation are regulated by pro- and anti-angiogenic factors, matrix-degrading proteases, and cell-extracellular matrix interactions. Temporal and spatial regulation of extracellular matrix remodeling events allows for local changes in net matrix deposition or degradation, which in turn contributes to control of cell growth, migration, and differentiation during different stages of angiogenesis. Remodeling of the extracellular matrix can have either pro- or anti-angiogenic effects. Extracellular matrix remodeling by proteases promotes cell migration, a critical event in the formation of new vessels. Matrix-bound growth factors released by proteases and/or by angiogenic factors promote angiogenesis by enhancing endothelial migration and growth. Extracellular matrix molecules, such as thrombospondin-1 and -2, and proteolytic fragments of matrix molecules, such as endostatin, can exert anti-angiogenic effects by inhibiting endothelial cell proliferation, migration and tube formation. In contrast, other matrix molecules promote endothelial cell growth and morphogenesis, and/or stabilize nascent blood vessels. Hence, extracellular matrix molecules and extracellular matrix remodelling events play a key role in regulating angiogenesis.  相似文献   

5.
Growth factors in ulcer healing: lessons from recent studies.   总被引:20,自引:0,他引:20  
Growth factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) and more recently vascular endothelial growth factor (VEGF) have been used extensively to heal experimental gastric, duodenal and colonic ulcers in animal models. Encouraging results have been reported in clinical trials with EGF and bFGF. Since our laboratory has been involved with the initial ulcer healing studies with bFGF, PDGF and VEGF, we summarize here the major lessons from these studies and from literature data. These conclusions relate to the role of: 1) gastrointestinal (GI) secretion; 2) epithelial versus vascular components of the healing; 3) efficacy in the upper and lower GI tract; 4) quality of ulcer healing; as well as 5) the endogenous origin; and 6) molar potency of growth factors. Namely, among these growth factors only EGF inhibits gastric acid and stimulates duodenal bicarbonate secretion, while chronic administration of bFGF slightly enhances gastric secretion and PDGF has no effect demonstrating that potent ulcer healing can be achieved without influencing acid base and mucus secretion. This might be related to the fact that these growth factors stimulate with varying potency virtually all the cellular elements needed for ulcer healing, e.g., epithelial cell proliferation and migration by EGF > bFGF > PDGF, fibroblast proliferation by bFGF > PDGF and angiogenesis by VEGF > bFGF > PDGF > EGF. Conceptually, the most interesting results were obtained recently with VEGF which is virtually specific for angiogenesis, illustrating that stimulation of vascular factors is sufficient for ulcer healing because epithelial cells apparently spontaneously proliferate and migrate over a dense granulation tissue to complete the healing process. Since these growth factors directly stimulate the cell components of ulcer healing, it is probably not surprising that they are active in both upper and lower GI tract lesions, produce good quality of ulcer healing in comparison with spontaneously healed duodenal ulcers which are hypovascular and muscle regeneration is not part of natural healing. Contrary to other antiulcer drugs, these growth factors are endogenously derived and play a role in the natural history of ulcer healing, and since these relatively large peptides (18-45 kDa) are active in ng quantities, their molar potency is 2-7 million times superior to cimetidine-like drugs. Thus growth factors are endogenously derived very potent antiulcer drugs which act independently of GI secretion, are active in upper and lower GI lesions, and since they stimulate virtually all the cells of the healing process, they produce an excellent quality of ulcer healing.  相似文献   

6.
Remodeling of extracellular matrices occurs during development, wound healing, and in a variety of pathological processes including atherosclerosis, ischemic injury, and angiogenesis. Thus, identifying factors that control the balance between matrix deposition and degradation during tissue remodeling is essential for understanding mechanisms that regulate a variety of normal and pathological processes. Using fibronectin-null cells, we found that fibronectin polymerization into the extracellular matrix is required for the deposition of collagen-I and thrombospondin-1 and that the maintenance of extracellular matrix fibronectin fibrils requires the continual polymerization of a fibronectin matrix. Further, integrin ligation alone is not sufficient to maintain extracellular matrix fibronectin in the absence of fibronectin deposition. Our data also demonstrate that the retention of thrombospondin-1 and collagen I into fibrillar structures within the extracellular matrix depends on an intact fibronectin matrix. An intact fibronectin matrix is also critical for maintaining the composition of cell-matrix adhesion sites; in the absence of fibronectin and fibronectin polymerization, neither alpha5beta1 integrin nor tensin localize to fibrillar cell-matrix adhesion sites. These data indicate that fibronectin polymerization is a critical regulator of extracellular matrix organization and stability. The ability of fibronectin polymerization to act as a switch that controls the organization and composition of the extracellular matrix and cell-matrix adhesion sites provides cells with a means of precisely controlling cell-extracellular matrix signaling events that regulate many aspects of cell behavior including cell proliferation, migration, and differentiation.  相似文献   

7.
There are more than 100 distinct types of cancer, and subtypes can be found within specific organs. Cancer progression is a complex multi-step process. These steps reflect alterations that drive the progressive transformation of normal cells into highly malignant ones. One critical step in tumor growth and invasion is the proteolytic processing of the extracellular matrix environment. The degradation of the extracellular matrix not only enables cell migration, invasion, and metastasis formation, but also affects cell behavior in multiple ways; on one hand by cleaving extracellular matrix bound growth factors and on the other hand by inhibiting angiogenesis into the tumor by liberating cryptic endogenous inhibitors of angiogenesis. Serine proteases and matrix metalloproteases are families of proteolytic enzymes involved in physiological and pathological extracellular matrix and basement membrane processing. In this review, we will focus on the role and activation of trypsinogens, a family of serine proteases, in cancer progression.  相似文献   

8.
Regulation of fracture repair by growth factors.   总被引:39,自引:0,他引:39  
Fractured bones heal by a cascade of cellular events in which mesenchymal cells respond to unknown regulators by proliferating, differentiating, and synthesizing extracellular matrix. Current concepts suggest that growth factors may regulate different steps in this cascade (10). Recent studies suggest regulatory roles for PDGF, aFGF, bFGF, and TGF-beta in the initiation and the development of the fracture callus. Fracture healing begins immediately following injury, when growth factors, including TGF-beta 1 and PDGF, are released into the fracture hematoma by platelets and inflammatory cells. TGF-beta 1 and FGF are synthesized by osteoblasts and chondrocytes throughout the healing process. TGF-beta 1 and PDGF appear to have an influence on the initiation of fracture repair and the formation of cartilage and intramembranous bone in the initiation of callus formation. Acidic FGF is synthesized by chondrocytes, chondrocyte precursors, and macrophages. It appears to stimulate the proliferation of immature chondrocytes or precursors, and indirectly regulates chondrocyte maturation and the expression of the cartilage matrix. Presumably, growth factors in the callus at later times regulate additional steps in repair of the bone after fracture. These studies suggest that growth factors are central regulators of cellular proliferation, differentiation, and extracellular matrix synthesis during fracture repair. Abnormal growth factor expression has been implicated as causing impaired or abnormal healing in other tissues, suggesting that altered growth factor expression also may be responsible for abnormal or delayed fracture repair. As a complete understanding of fracture-healing regulation evolves, we expect new insights into the etiology of abnormal or delayed fracture healing, and possibly new therapies for these difficult clinical problems.  相似文献   

9.
The fibroblast growth factor-binding protein FGF-BP   总被引:5,自引:0,他引:5  
Fibroblast growth factors (FGFs) are important regulators of cell migration, proliferation and differentiation, e.g., during embryogenesis and wound healing, and under several pathological conditions including tumor growth and tumor angiogenesis. Since heparin-binding FGFs are tightly bound to heparansulfate proteoglycans, and therefore, trapped in the extracellular matrix, their release through the action of an FGF-binding protein (FGF-BP) is one of the critical steps in FGF bioactivation. FGF-BP expression is highly tissue specific and strictly regulated through different promoter elements. Besides its role in embryogenesis and wound healing, FGF-BP is upregulated in several tumors and it is associated especially with early stages of tumor formation, where angiogenesis plays a critical role. Concomitantly, in several mouse tumor models, targeting of FGF-BP by ribozymes or RNA interference (RNAi) abolishes or reduces tumor growth and tumor angiogenesis. This indicates that FGF-BP can be rate-limiting for tumor growth and serves as an angiogenic switch molecule, and that it represents an increasingly promising target molecule in anti-tumor therapy.  相似文献   

10.
TGF-beta signaling: a tale of two responses   总被引:10,自引:0,他引:10  
  相似文献   

11.
Regulation of angiogenesis: wound healing as a model   总被引:1,自引:0,他引:1  
Normal tissue function requires adequate supply of oxygen through blood vessels. Understanding how blood vessels form is a challenging objective because angiogenesis is vital to many physiological and pathological processes. Unraveling mechanisms of angiogenesis would offer therapeutic options to ameliorate disorders that are currently leading causes of mortality and morbidity, including cardiovascular diseases, cancer, chronic inflammatory disorders, diabetic retinopathy, excessive tissue defects, and chronic non-healing wounds. Restoring blood flow to the site of injured tissue is a prerequisite for mounting a successful repair response, and wound angiogenesis represents a paradigmatic model to study molecular mechanisms involved in the formation and remodeling of vascular structures. In particular, repair of skin defects offers an ideal model to analyze angiogenesis due to its easy accessibility to control and manipulate this process. Most of those growth factors, extracellular matrix molecules, and cell types, recently discovered and considered as crucial factors in blood vessel formation, have been identified and analyzed during skin repair and the process of wound angiogenesis. This article will review cellular and molecular mechanisms controlling angiogenesis in cutaneous tissue repair in light of recent reports and data from our laboratories. In this article we will discuss the contribution of growth factors, basement membrane molecules, and mural cells in wound angiogenesis. The article provides a rationale for targeting the angiogenic response in order to modulate the outcome of the healing response.  相似文献   

12.
Mechanisms of TGF-β-mediated apoptosis   总被引:2,自引:0,他引:2  
  相似文献   

13.
Conceptually, premature initiation of post-wound angiogenesis could interfere with hemostasis, as it relies on fibrinolysis. The mechanisms facilitating orchestration of these events remain poorly understood, however, likely due to limitations in discerning the individual contribution of cells and extracellular matrix. Here, we designed an in vitro Hemostatic-Components-Model (HCM) to investigate the role of the fibrin matrix as protein factor-carrier, independent of its cell-scaffold function. After characterizing the proteomic profile of HCM-harvested matrix releasates, we demonstrate that the key pro-/anti-angiogenic factors, VEGF and PF4, are differentially bound by the matrix. Changing matrix fibrin mass consequently alters the balance of releasate factor concentrations, with differential effects on basic endothelial cell (EC) behaviors. While increasing mass, and releasate VEGF levels, promoted EC chemotactic migration, it progressively inhibited tube formation, a response that was dependent on PF4. These results indicate that the clot’s matrix component initially serves as biochemical anti-angiogenic barrier, suggesting that post-hemostatic angiogenesis follows fibrinolysis-mediated angiogenic disinhibition. Beyond their significance towards understanding the spatiotemporal regulation of wound healing, our findings could inform the study of other pathophysiological processes in which coagulation and angiogenesis are prominent features, such as cardiovascular and malignant disease.  相似文献   

14.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGF-β) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGF-β-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins, and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.  相似文献   

15.
The extracellular matrix profoundly affects cellular response to soluble motogens. In view of this critical aspect of matrix functionality, we have developed a novel assay to quantify chemo-regulated cell migration within biologically relevant 3-dimensional matrices. In this "sandwich" assay, target cells are plated at the interface between an upper and lower matrix compartment, either in the presence of an isotropic (uniform) or anisotropic (gradient) spatial distribution of test motogen. Cell migration in response to the different conditions is ascertained by quantifying their subsequent disposition within the upper and lower matrix compartments. The objective of this study has been to compare the motogenic activities of platelet-derived growth factor (PDGF-AB) and transforming growth factor-beta isoforms (TGF-beta1, -beta2 and -beta3) in the sandwich assay and the commonly employed transmembrane assay. As previously reported, dermal fibroblasts exhibited a motogenic response to isotropic and anisotropic distributions of all tested cytokines in the transmembrane assay. In contrast, only PDGF-AB and TGF-beta3 were active in the sandwich assay, each eliciting directionally unbiased (symmetrical) migration into the upper and lower type I collagen matrices in response to an isotropic cytokine distribution and a directionally biased response to an anisotropic distribution. TGF-beta1 and -beta2 were completely devoid of motogenic activity. These results are consistent with the reported differential bioactivities of PDGF and TGF-beta3 compared to TGF-beta1 and -beta2 in animal models of wound healing and suggest that the sandwich assay provides a means of obtaining physiologically relevant data regarding chemo-regulated cell migration.  相似文献   

16.
Mechanisms that regulate neural stem cell activity in the adult brain are tightly coordinated. They provide new neurons and glia in regions associated with high cellular and functional plasticity, after injury, or during neurodegeneration. Because of the proliferative and plastic potential of neural stem cells, they are currently thought to escape their physiological control mechanisms and transform to cancer stem cells. Signals provided by proteins of the transforming growth factor (TGF)-beta family might represent a system by which neural stem cells are controlled under physiological conditions but released from this control after transformation to cancer stem cells. TGF-beta is a multifunctional cytokine involved in various physiological and patho-physiological processes of the brain. It is induced in the adult brain after injury or hypoxia and during neurodegeneration when it modulates and dampens inflammatory responses. After injury, although TGF-beta is neuroprotective, it may limit the self-repair of the brain by inhibiting neural stem cell proliferation. Similar to its effect on neural stem cells, TGF-beta reveals anti-proliferative control on most cell types; however, paradoxically, many brain tumors escape from TGF-beta control. Moreover, brain tumors develop mechanisms that change the anti-proliferative influence of TGF-beta into oncogenic cues, mainly by orchestrating a multitude of TGF-beta-mediated effects upon matrix, migration and invasion, angiogenesis, and, most importantly, immune escape mechanisms. Thus, TGF-beta is involved in tumor progression. This review focuses on TGF-beta and its role in the regulation and control of neural and of brain-cancer stem cells. This work was supported by the German Federal Ministry of Education and Research (BMBF no. 01GA0510 and no. 0312134) and by the Bavarian State Ministry of Sciences, Research and the Arts, "Forneurocell grant".  相似文献   

17.
During fracture healing, multipotential stem cells differentiate into specialized cells responsible for producing the different tissues involved in the bone regeneration process. This cell differentiation has been shown to be regulated by locally expressed growth factors. The details of their regulatory mechanisms need to be understood. In this work, we present a two-dimensional mathematical model of the bone healing process for moderate fracture gap sizes and fracture stability. The inflammatory and tissue regeneration stages of healing are simulated by modeling mesenchymal cell migration; mesenchymal cell, chondrocyte and osteoblast proliferation and differentiation, and extracellular matrix synthesis and degradation over time. The effects of two generic growth factors on cell differentiation are based on the experimentally studied chondrogenic and osteogenic effects of bone morphogenetic proteins-2 and 4 and transforming growth factor-beta-1, respectively. The model successfully simulates the progression of healing and predicts that the rate of osteogenic growth factor production by osteoblasts and the duration of the initial release of growth factors upon injury are particularly important parameters for complete ossification and successful healing. This temporo-spatial model of fracture healing is the first model to consider the effects of growth factors. It will help us understand the regulatory mechanisms involved in bone regeneration and provides a mathematical framework with which to design experiments and understand pathological conditions.  相似文献   

18.
The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-beta1 mRNA, enhanced TGF-beta1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-beta1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.  相似文献   

19.
An intracrine view of angiogenesis   总被引:1,自引:0,他引:1  
Angiogenesis, the generation of new blood vessels from pre-existing vessels, is an integral component of wound healing, responses to inflammation and other physiologic processes. It is also an essential part of tumor growth; in the absence of new vessel formation, tumors cannot expand beyond a small volume. Although much is known about angiogenesis and its regulation, there is no overall theory that describes or explains this process. It is here suggested that the intracrine hypothesis, which ascribes to certain extracellular signaling peptides (whether hormones, growth factors, DNA-binding proteins or enzymes) a role in both intracellular biology and extracellular signaling, can contribute to a more general understanding of angiogenesis. Intracrine factors participate in angiogenesis in the following ways: (1) they can act within the cells that synthesized them (type I intracrine action), (2) they can be secreted and then taken up by their cell of synthesis to act intracellularly (type II intracrine action ), or (3) they can be secreted and internalized by a distant target cell (type III intracrine action). The parallels between the intracrine growth factor mechanisms cancer cells employ in stimulating their own growth and the mechanisms operative in endothelial cell proliferation during angiogenesis ("intracrine reciprocity") are discussed. Collectively, these explorations lead to testable hypotheses regarding the regulation of normal and pathological angiogenesis, and point to similarities between tumor-induced angiogenesis and tissue differentiation.  相似文献   

20.
The main physiological function of plasmin is blood clot fibrinolysis and restoration of normal blood flow. To date, however, it became apparent that in addition to thrombolysis, the plasminogen/plasmin system plays an important physiological and pathological role in a number of other essential processes: degradation of the extracellular matrix, embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation, and tumor cell migration. This review focuses on structural features of plasminogen, regulation of its activation by physiological plasminogen activators, inhibitors of plasmin, and plasminogen activators, and the role of plasminogen binding to fibrin, cellular receptors, and extracellular ligands in various functions performed by plasmin thus formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号