首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Accurate chromosome alignment at metaphase and subsequent segregation of condensed chromosomes is a complex process involving elaborate and only partially characterized molecular machinery. Although several spindle associated molecular motors have been shown to be essential for mitotic function, only a few chromosome arm--associated motors have been described. Here, we show that human chromokinesin human HKIF4A (HKIF4A) is an essential chromosome-associated molecular motor involved in faithful chromosome segregation. HKIF4A localizes in the nucleoplasm during interphase and on condensed chromosome arms during mitosis. It accumulates in the mid-zone from late anaphase and localizes to the cytokinetic ring during cytokinesis. RNA interference--mediated depletion of HKIF4A in human cells results in defective prometaphase organization, chromosome mis-alignment at metaphase, spindle defects, and chromosome mis-segregation. HKIF4A interacts with the condensin I and II complexes and HKIF4A depletion results in chromosome hypercondensation, suggesting that HKIF4A is required for maintaining normal chromosome architecture. Our results provide functional evidence that human KIF4A is a novel component of the chromosome condensation and segregation machinery functioning in multiple steps of mitotic division.  相似文献   

4.
5.
Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration) on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose) for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal neurons, which may lead to changes in synaptic proteins, thus contributing to changes in hippocampal neurotransmission and to cognitive and memory impairments.  相似文献   

6.
Insulin stimulates glucose uptake in muscle and adipose cells by mobilizing intracellular membrane vesicles containing GLUT4 glucose transporter proteins to the plasma membrane. Here we show in live cultured adipocytes that intracellular membranes containing GLUT4-yellow fluorescent protein (YFP) move along tubulin-cyan fluorescent protein-labeled microtubules in response to insulin by a mechanism that is insensitive to the phosphatidylinositol 3 (PI3)-kinase inhibitor wortmannin. Insulin increased by several fold the observed frequencies, but not velocities, of long-range movements of GLUT4-YFP on microtubules, both away from and towards the perinuclear region. Genomics screens show conventional kinesin KIF5B is highly expressed in adipocytes and this kinesin is partially co-localized with perinuclear GLUT4. Dominant-negative mutants of conventional kinesin light chain blocked outward GLUT4 vesicle movements and translocation of exofacial Myc-tagged GLUT4-green fluorescent protein to the plasma membrane in response to insulin. These data reveal that insulin signaling targets the engagement or initiates the movement of GLUT4-containing membranes on microtubules via conventional kinesin through a PI3-kinase-independent mechanism. This insulin signaling pathway regulating KIF5B function appears to be required for GLUT4 translocation to the plasma membrane.  相似文献   

7.
Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 μm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 μm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons.  相似文献   

8.
9.
10.
Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase.  相似文献   

11.
We have cloned from rat brain the cDNA encoding an 89,828-Da kinesin-related polypeptide KIF3C that is enriched in brain, retina, and lung. Immunocytochemistry of hippocampal neurons in culture shows that KIF3C is localized to cell bodies, dendrites, and, in lesser amounts, to axons. In subcellular fractionation experiments, KIF3C cofractionates with a distinct population of membrane vesicles. Native KIF3C binds to microtubules in a kinesin-like, nucleotide-dependent manner. KIF3C is most similar to mouse KIF3B and KIF3A, two closely related kinesins that are normally present as a heteromer. In sucrose density gradients, KIF3C sediments at two distinct densities, suggesting that it may be part of two different multimolecular complexes. Immunoprecipitation experiments show that KIF3C is in part associated with KIF3A, but not with KIF3B. Unlike KIF3B, a significant portion of KIF3C is not associated with KIF3A. Consistent with these biochemical properties, the distribution of KIF3C in the CNS has both similarities and differences compared with KIF3A and KIF3B. These results suggest that KIF3C is a vesicle-associated motor that functions both independently and in association with KIF3A.  相似文献   

12.
Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.  相似文献   

13.
A number of proteins accumulate in the anaphase spindle midzone, but the interaction and precise role of these proteins in midzone organization remain obscure. Here, we found that the microtubule-bundling protein PRC1 bound separately to the three motor proteins, KIF4, MKLP1 and CENP-E, but not to the chromosomal passenger proteins. In KIF4-deficient cells, the central spindle was disorganized, and all midzone-associated proteins including PRC1 failed to concentrate at the midline, instead being dispersed along the loosened microtubule bundles of the central spindle. This suggests that KIF4 is essential for the organization of central spindles and for midzone formation. In PRC1-deficient cells, no midzone was formed, KIF4 and CENP-E did not localize to the disconnected half-spindle, and MKLP1 and chromosomal passenger proteins localized to discrete subdomains near microtubule plus ends in the half-spindle. Thus, PRC1 is required for interaction of the two half-spindles and for localization of KIF4 and CENP-E. These results suggest that KIF4 and its binding partner PRC1 play essential roles in the organization of central spindles and midzone formation.  相似文献   

14.
摘要 目的:探讨非小细胞肺癌(NSCLC)组织驱动蛋白超家族成员2A(KIF2A)、驱动蛋白超家族成员2C(KIF2C)、驱动蛋白超家族成员20A(KIF20A)信使核糖核酸(mRNA)表达与临床病理特征和预后的关系。方法:选择2016年9月至2019年9月天津医科大学总医院手术切除的NSCLC患者106例,取其癌组织及其对应的癌旁组织,应用荧光定量聚合酶链式反应(RT-qPCR)检测组织中KIF2A、KIF2C、KIF20A mRNA表达,分析其与临床病理特征的关系。应用 Pearson相关性分析NSCLC组织中KIF2A、KIF2C、KIF20A mRNA表达间的关系。随访3年,应用Kaplan-Meier生存曲线分析KIF2A、KIF2C、KIF20A mRNA表达与患者预后关系。结果:NSCLC癌组织中KIF2A、KIF2C、KIF20A mRNA表达水平显著高于癌旁组织(P<0.05)。低分化、淋巴结转移、临床分期Ⅲ A 期NSCLC癌组织中KIF2A、KIF2C、KIF20A mRNA表达水平显著高于中高分化、无淋巴结转移及临床分期I、II期NSCLC癌组织(P<0.05)。Pearson相关分析显示,NSCLC癌组织中KIF2A mRNA表达与KIF2CmRNA、KIF20A mRNA表达呈正相关,KIF2C mRNA表达与KIF20A mRNA表达呈正相关(P<0.05)。Kaplan-Meier法分析显示KIF2A mRNA低表达组、KIF2C mRNA低表达组、KIF20A mRNA低表达组3年生存率分别为(84.78%,86.27%,81.48%)显著高于KIF2A mRNA高表达组、KIF2C mRNA高表达组、KIF20A mRNA高表达组(59.62%,55.32%,59.09%)(P<0.05)。结论:KIF2A、KIF2C、KIF20A mRNA在NSCLC组织中存在高表达,且与低分化、淋巴结转移、临床分期及预后有关。  相似文献   

15.
A cDNA clone encoding a cellular protein that interacts with murine leukemia virus (MuLV) Gag proteins was isolated from a T-cell lymphoma library. The sequence of the clone is identical to the C terminus of a cellular protein, KIF4, a microtubule-associated motor protein that belongs to the kinesin superfamily. KIF4-MuLV Gag associations have been detected in vitro and in vivo in mammalian cells. We suggest that KIF4 could be involved in Gag polyprotein translocation from the cytoplasm to the cell membrane.  相似文献   

16.
17.
EMBO J 32 15, 2125–2139 doi:10.1038/emboj.2013.130; published online June072013Protein sorting pathways control correct delivery of membrane proteins to specific compartments of the plasma membrane and are required to maintain the physiological functions in all epithelia. Most clathrin-dependent cargoes require the adaptor protein complexes AP-1A and AP-1B for proper sorting to the basolateral plasma membrane. In this issue of The EMBO Journal, Perez Bay et al (2013) shed light on the mechanism of basal-to-apical protein transport, or transcytosis, of the transferrin receptor in natively AP-1B-deficient epithelia. In AP-1B-deficient epithelia, the transferrin receptor transcytoses through the apical recycling endosome, and requires Rab11. Furthermore, they characterize a novel and specific role for the endosomal microtubule motor Kinesin KIF16B in transferrin receptor apical transport. These findings constitute the first characterization of a specific microtubule motor involved in basal-to-apical transcytosis in epithelia.Epithelial cells present a compartmentalized plasma membrane, where the composition of each compartment is tightly controlled by a precise protein and lipid sorting machinery (Folsch, 2008). The two most conspicuous compartments are the apical and basolateral domains, which generate and segregate from each other through the formation of apically localized junctional complexes. Protein sorting mechanisms ensure delivery of newly synthesized or recycled, protein components to their proper localization in either the apical or basolateral plasma membrane domains. Vectorial transport of proteins requires sorting determinants that are present in the cytoplasmic, transmembrane or extracellular domains. Most of the information that we have about these sorting determinants comes from the basolateral traffic, which depends on clathrin adaptor proteins (APs) AP-1A/B, AP-3 and AP-4 (Gonzalez and Rodriguez-Boulan, 2009). Specific APs bind to cytoplasmic sorting motifs in transmembrane proteins and recruit clathrin-coat components, which sequentially induce membrane curvature, clathrin oligomerization, vesicle budding and fission (Ohno, 2006; Hirst et al, 2011). Mammalian cells present five different AP complexes (AP1–5), each constituted by a heterotetramer of one α-, γ-, δ-, ɛ- or ζ-subunit, one β(1–5) subunit, one σ(1–5) subunit and one μ(1–5) subunit. How these clathrin-coated vesicles deliver membranes to precise compartments in the cell to regulate protein sorting is still poorly understood. The AP1 complex is a key regulator of basolateral polarity (Folsch et al, 1999; Gan et al, 2002; Gravotta et al, 2012). The AP1 complex μ-subunit presents two isoforms μ1A and μ1B, which define the formation of two different complexes, AP-1A and AP-1B, both required for basolateral polarity. AP-1A is ubiquitously expressed in different tissues and localizes mainly to the trans-Golgi network. In contrast, AP-1B is primarily localized to common recycling endosomes (CRE) and is specifically expressed in the majority of epithelial tissues, with the remarkable exception of retinal pigment epithelium and the proximal convoluted tubule in the nephron, which sort most of the basolateral cargo to the apical surface.A wide array of model membrane proteins requires AP-1B to properly localize to the basolateral membrane, including the low-density lipoprotein receptor (LDLR), the VSV-G protein and the transferrin receptor (TfR). Furthermore, the expression of μ1B in μ1B-deficient epithelial cell line LLC-PK1 is sufficient to prevent apical sorting of TfR, indicating that AP-1B is a main player in this clathrin-mediated basolateral sorting pathway. Interestingly, the results of the present study suggest that transcytosis (a membrane trafficking pathway that transports apical or basolateral proteins to the opposite domain in the plasma membrane) is the main mechanism for apical transport of clathrin-dependent cargoes in AP-1B-deficient cells. Basal-to-apical transcytosis of the polymeric IgA receptor (pIgAR) is the best-known transcytotic pathway, and requires several steps in which the receptor complex traverses multiple compartments before reaching a Rab11-positive apical recycling compartment, from where it is sorted to the apical plasma membrane (Golachowska et al, 2010). Polymeric IgA receptor transcytosis requires the function of cytoskeletal proteins for its correct delivery to the apical membrane, including microtubules and actin binding motors. However, no specific microtubule motor has ever been described associated with transcytosis.In the present study, Perez Bay et al (2013) analyse how the TfR is transported to the apical membrane in μ1B-deficient epithelia using as model system the retinal pigment epithelium cell line, which lacks AP-1B, and MDCK cells. They show that basolateral administration of labelled Tf results in its endocytosis and transcytosis towards the apical membrane in AP-1B-depleted MDCK cells, following a pathway that involves Rab11-positive apical recycling endosomes (AREs), and requires Rab11 for its correct delivery. Additionally, they find that TfR transport into AREs depends on microtubules and the kinesin KIF16B, a specific microtubule motor present in the CRE (Figure 1). KIF16B is a plus-end microtubule motor that binds to PtdIns(3)P and GTP-bound Rab14 and regulates the distribution of early endosomes (Hoepfner et al, 2005; Ueno et al, 2011). Surprisingly though, apical transport of pIgAR is not affected by the expression of a KIF16B-dominant negative mutant, which suggests that assembly of KIF16B/TfR carriers occurs downstream of cargo separation during transcytosis. It is also tempting to speculate that more than one transcytosis pathways are at play, and while TfR uses the KIF16B-dependent pathway, pIgAR is transported through a KIF16B independent mechanism. This article is the first study of KIF16B in epithelial cells, and the first showing involvement of a microtubule motor in transcytosis, more than 20 years after the pioneering studies that characterized the role of microtubules in this process (Hunziker et al, 1990).Open in a separate windowFigure 1KIF16B controls basal-to-apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. In AP-1B-expressing epithelia (such as MDCK cells), transferrin receptor (TfR) is endocytosed and sorted to common recycling endosomes, where AP-1B-clathrin-vesicles assemble and transport the protein to the basolateral plasma membrane. In AP-1B-deficient epithelia (such as RPE cells), internalized TfR is instead sorted by the plus-end directed microtubule motor KIF16B towards the ARE, and then transcytosed to the apical plasma membrane through a Rab11-regulated pathway. Polymeric IgA receptor is internalized into the same basolateral endosomes, but it uses a KIF16B-independent pathway to reach the apical membrane.As a whole, this paper represents a significant advance in our understanding of the protein sorting machinery in epithelial cells, and importantly, opens new questions that will be addressed in future studies. First, is the KIF16B-dependent recycling/sorting pathway required for other cargoes, especially in AP-1B-positive epithelia? Second, why TfR, but not pIgAR, requires KIF16B for correct sorting? Although KIF16B is not required for pIgAR transcytosis, its transport route still requires microtubules, thus opening the possibility for discovery of additional microtubule motors involved in transcytosis. And finally, what is the mechanism of KIF16B binding to TfR-positive recycling endosomes? It is possible that the mechanism depends on the activation of Rab14, which has been characterized as a regulator of lipid-raft transport from the Golgi apparatus to recycling endosomes (Ueno et al, 2011).  相似文献   

18.
The Ran-binding protein 2 (RanBP2) is a large mosaic protein with a pleiotropic role in cell function. Although the contribution of each partner and domain of RanBP2 to its biological functions are not understood, physiological deficits of RanBP2 downregulate glucose catabolism and energy homeostasis and lead to delocalization of mitochondria components in photosensory neurons. The kinesin-binding domain (KBD) of RanBP2 associates selectively in the central nervous system (CNS), and directly, with the ubiquitous and CNS-specific kinesins, KIF5B and KIF5C, respectively, but not with the highly homologous KIF5A. Here, we determine the molecular and biological bases of the selective interaction between RanBP2 and KIF5B/KIF5C. This interaction is conferred by a approximately 100-residue segment, comprising a portion of the coiled-coil and globular tail cargo-binding domains of KIF5B/KIF5C. A single residue conserved in KIF5B and KIF5C, but not KIF5A, confers KIF5-isotype-specific association with RanBP2. This interaction is also mediated by a conserved leucine-like heptad motif present in KIF5s and KBD of RanBP2. Selective inhibition of the interaction between KBD of RanBP2 and KIF5B/KIF5C in cell lines causes perinuclear clustering of mitochondria, but not of lysosomes, deficits in mitochondrial membrane potential and ultimately, cell shrinkage. Collectively, the data provide a rationale of the KIF5 subtype-specific interaction with RanBP2 and support a novel kinesin-dependent role of RanBP2 in mitochondria transport and function. The data also strengthen a model whereby the selection of a large array of cargoes for transport by a restricted number of motor proteins is mediated by adaptor proteins such as RanBP2.  相似文献   

19.
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2−/− mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号