首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant fall occurred in the protein content of successive specimens of lumbar cerebrospinal fluid (C.S.F.) withdrawn during the course of air encephalography in 57% of cases. No correlation was found between the fall in the protein concentration and the total volume of air injected or the total volume of C.S.F. withdrawn, but the size of the fall was greater when the initial lumbar C.S.F. protein concentration was raised. The importance of taking specimens for routine laboratory analysis before the injection of any air is emphasized.  相似文献   

2.
Significant amounts of acid-hydrolyzable conjugates of 3,4-dihydroxyphenylethylamine, norepinephrine, and 5-hydroxytryptamine were detected in lumbar CSF from 22 awake unpremedicated healthy individuals. In the CSF samples, the amounts of conjugated amines almost always exceeded the amounts of free amines, but were less than the amounts of the acid metabolites 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid.  相似文献   

3.
4.
Lumbar punctures were performed on four occasions over a 5-day period (8:30 a.m. on days 1, 3, and 5; 2:30 p.m. on day 2) on 10 normal volunteers (five of each sex; mean age, 27.7 years) to assess, with repeated sampling, the day-to-day variation of selected CSF parameters. Two subjects abstained from the lumbar puncture on day 5 due to headache after the third puncture. Lumbar CSF was analyzed for concentrations of free and total gamma-aminobutyric acid (GABA), homocarnosine, homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), total protein, albumin, and immunoglobulin (Ig)G. No significant concentration differences were found between the afternoon and next morning samples. No differences were found in concentrations of free GABA, total GABA, homocarnosine, 5-HIAA, or albumin across the study. In contrast, HVA concentrations significantly increased by day 5, whereas total protein and IgG decreased during the study. The most likely explanation for these changes involves the known concentration gradients in the CSF column.  相似文献   

5.
The interpretation of central 3,4-dihydroxyphenylethylamine (dopamine, DA) metabolism, as indicated by determinations in rat cisternal CSF, was investigated using intrastriatal injection of the DA neurotoxin 6-hydroxydopamine (6-OHDA) and intraperitoneal injection of the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4). DA turnover was subsequently determined by measurement of the rate of accumulation of total 3,4-dihydroxyphenylacetic acid and homovanillic acid (DOPAC + HVA) in the CSF after probenecid was given. Two days later the rats were killed, and metabolism of DA and 5-hydroxytryptamine (5-HT) was investigated by determining levels of the amines and their metabolites in brain regions. Although 6-OHDA greatly decreased striatal DA metabolism, this was not paralleled by DA turnover as indicated by CSF, as this fell only moderately and approximately in parallel with results for the brain as a whole. 5-HT metabolism was essentially unaltered. DSP4 considerably depleted noradrenaline and caused smaller decreases of 5-HT metabolism in some regions. However, DA metabolism was not significantly affected, either in brain or CSF, which suggests that noradrenaline neurones make only a small contribution to central DA metabolism. Results as a whole suggest that DOPAC and HVA concentrations in rat cisternal CSF reflect whole brain DA metabolism and derive predominantly from DA neurones in extrastriatal regions of the brain.  相似文献   

6.
Major and minor pathways of metabolism in the mammalian CNS result in the formation of 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and normetanephrine (NMN) from norepinephrine (NE), and homovanillic acid (HVA) and 3-methoxytyramine (3-MT) from dopamine (DA), respectively. The correlational relationships between HVA and 3-MT and between MHPG and NMN in primate CSF and plasma have not been described. These relationships may help to elucidate the usefulness of CSF and plasma metabolites as indices of CNS NE and DA activity. In addition, because NMN is unlikely to cross the blood-brain barrier. CSF NMN concentrations would not be confounded by contributions from plasma, which is a major issue with CSF MHPG. We have obtained repeated samples of plasma and CSF from drug-naive male squirrel monkeys and have measured the concentrations of MHPG, HVA, NMN, and 3-MT to define their correlational relationships. For the NE metabolites, significant correlations were obtained for CSF MHPG and NMN (r = 0.806, p less than 0.001), plasma MHPG and CSF NMN (r = 0.753, p less than 0.001), and plasma and CSF MHPG (r = 0.776, p less than 0.001). These results suggest that CSF and plasma MHPG and CSF NMN may reflect gross changes in whole brain steady-state noradrenergic metabolism. Only a single significant relationship was demonstrated for the DA metabolites, with CSF 3-MT correlating with plasma HVA (r = 0.301, p less than 0.025). The results for the DA metabolites probably reflect regional differences in steady-state brain dopaminergic metabolism.  相似文献   

7.
8.
Similar to metabolites of other aminergic transmitters, histamine metabolites of brain, tele-methylhistamine (t-MH) and tele-methylimidazoleacetic acid (t-MIAA), could have a concentration gradient between rostral and caudal sites of CSF. To test this hypothesis, cisternal and lumbar CSF samples were collected in pairs from eight monkeys (Macaca mulatta), and levels of t-MH and t-MIAA were measured by gas chromatography-mass spectrometry. pros-Methylimidazoleacetic acid (p-MIAA), an endogenous isomer of t-MIAA that is not a histamine metabolite, was also measured. Cisternal levels (in picomoles per milliliter, mean +/- SEM) of t-MH (9.9 +/- 1.4) and t-MIAA (40.8 +/- 7.6), but not of p-MIAA (9.7 +/- 1.2), exceeded those in lumbar CSF (t-MH, 1.8 +/- 0.3; t-MIAA, 6.8 +/- 0.9; p-MIAA, 8.6 +/- 0.6) in every monkey. The magnitudes of the mean cisternal-lumbar concentration gradients for t-MH (6.6 +/- 1.1) and t-MIAA (6.5 +/- 1.3) were indistinguishable. These gradients exceed those of metabolites of most other transmitters. There was no gradient for the levels of p-MIAA. The cisternal, but not lumbar, levels of t-MH and t-MIAA were correlated. There was no significant difference between the means of the metabolite concentration ratios (t-MIAA/t-MH) in cisternal (4.0 +/- 0.4) and lumbar (4.4 +/- 0.9) CSF. The steepness of these gradients suggests that levels of t-MH and t-MIAA in lumbar CSF might be useful probes of histaminergic metabolism in brain.  相似文献   

9.

This study was conducted to determine whether local arterial pulsations are sufficient to cause cerebrospinal fluid (CSF) flow along perivascular spaces (PVS) within the spinal cord. A theoretical model of the perivascular space surrounding a "typical" small artery was analysed using computational fluid dynamics. Systolic pulsations were modelled as travelling waves on the arterial wall. The effects of wave geometry and variable pressure conditions on fluid flow were investigated. Arterial pulsations induce fluid movement in the PVS in the direction of arterial wave travel. Perivascular flow continues even in the presence of adverse pressure gradients of a few kilopascals. Flow rates are greater with increasing pulse wave velocities and arterial deformation, as both an absolute amplitude and as a proportion of the PVS. The model suggests that arterial pulsations are sufficient to cause fluid flow in the perivascular space even against modest adverse pressure gradients. Local increases in flow in this perivascular pumping mechanism or reduction in outflow may be important in the etiology of syringomyelia.  相似文献   

10.
We used a cross-sectional sample to compare ontogenetic trajectories in the concentrations of monoamine neurotransmitter metabolites in cerebrospinal fluid of wild anubis (Papio anubis, n = 49) and hamadryas (P. hamadryas, n = 54) baboons to test the prediction that they would differ, especially in males, in association with their distinct behavioral ontogenies. Values of all 3 metabolites [3-methoxy-4-hydroxyphenylglycol (MHPG), the norepinephrine metabolite; 5-hydroxyindoleacetic acid (5-HIAA), the serotonin metabolite; and homovanillic acid (HVA), the dopamine metabolite] declined consistently with dentally-calibrated maturation, and few taxon-related differences were apparent among juveniles. Adult females were too few for adequate comparison, but a discriminant function suggested that they might differ by taxon. Adult males of the 2 species differed strikingly from juveniles and from each other. Contrary to our initial hypothesis, adult male anubis had significantly lower HVA and MHPG, and higher 5-HIAA levels, than predicted from the overall, age-related trend, and MHPG continued to decline with age among adults. As young adults, male hamadryas had low 5-HIAA and a high HVA/5-HIAA ratio, while older males [normatively one-male unit (OMU) leaders] showed a reversal in the trend, with 5-HIAA rising and the HVA/5-HIAA ratio tending to fall. We speculate that the results are related to the dispersing and philopatric ontogenies of anubis and hamadryas males, respectively. Adult male anubis, whose fitness depends on building social networks with nonkin, have high relative serotonin activity, commonly associated with greater social circumspection and skill. Young adult male hamadryas, living among agnatic kin and mating opportunistically, exhibit low 5-HIAA levels, generally associated with impulsivity and social irresponsibility. This reverses as a male approaches the age at which he is normatively the leader of a one-male unit (OMU), and his fitness depends on his maintaining stable relationships with other leaders and with females. An erratum to this article can be found at  相似文献   

11.
12.
The concentrations of the acidic dopamine (DA) catabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) measured in human CSF are supposed to reflect the "turnover" of DA in the brain. The notion of "turnover" is, however, not synonymous with impulse nerve activity in the dopaminergic systems. Significant amounts of DOPAC and HVA could, indeed, be demonstrated in brain structures wherein dopaminergic innervation has not been documented. It must also be noted that DA is not only a neurotransmitter itself, but also a precursor of norepinephrine and epinephrine. Furthermore, in lumbar CSF, levels of biogenic amine catabolites partially reflect metabolism in the spinal cord and may have limited relevance to neurotransmission in the brain. To elucidate these points further, we determined the concentrations of DOPAC and HVA in 22 areas of six human brains and eight levels of six human spinal cords. The data were correlated with the concentration of DA. Quantitative determinations were done using HPLC with electrochemical detection, after solvent and ion-pair extraction. In this study, significant amounts of both DOPAC and HVA were demonstrated in brain structures not previously associated with dopaminergic innervation. The relatively lower DA concentration in these structures suggests that in these regions, the DOPAC and HVA concentrations are unrelated to dopaminergic neurotransmission. The possible role of capillary walls and glial cells in the catabolism of DA must be further evaluated. The demonstration of DOPAC and HVA in the spinal cord is another argument against the hypothesis that CSF levels of HVA and DOPAC reflect closely the activity of the dopaminergic systems in the brain.  相似文献   

13.
The immunoglobulins G, A, M, and D have been measured in the cerebrospinal fluid of 207 patients with neurological disease. Raised levels of IgG, expressed as a percentage of total cerebrospinal fluid (C.S.F.) protein, were found in 62% of 45 cases of multiple sclerosis compared with 14% of 160 cases with various other neurological disorders. Thus measurement of the IgG level is probably a useful confirmatory investigation in multiple sclerosis. IgA and IgM were found only in the C.S.F. of patients with a raised protein level, and IgD was not detected.  相似文献   

14.
15.
16.
17.
Biogenic amine precursors and metabolites were measured in cisternal cerebrospinal fluid from 83 female and 55 male vervet monkeys. The results indicate that mean rates of 5-hydroxytryptamine, dopamine, and noradrenaline metabolism in the brain are higher in females than in males. They also suggest that under physiological circumstances tryptophan availability is involved in the control of brain 5-hydroxytryptamine synthesis while tyrosine availability is involved in control of both dopamine and noradrenaline metabolism. The similarities seen between our results on vervets and those seen with human cerebrospinal fluid suggest that the vervet is a useful primate to study.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号