首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Herbivorous fishes are a key functional group on coral reefs. These fishes are central to the capacity of reefs to resist phase shifts and regenerate after disturbance. Despite this importance few studies have quantified the direct impact of these fishes on coral reefs. In this study the roles of parrotfishes, a ubiquitous group of herbivorous fishes, were examined on reefs in the northern Great Barrier Reef. The distribution of 24 species of parrotfish was quantified on three reefs in each of three cross-shelf regions. Functional roles (grazing, erosion, coral predation and sediment reworking) were calculated as the product of fish density, bite area or volume, bite rate, and the proportion of bites taken from various substrata. Inner-shelf reefs supported high densities but low biomass of parrotfishes, with high rates of grazing and sediment reworking. In contrast, outer-shelf reefs were characterised by low densities and high biomass of parrotfish, with high rates of erosion and coral predation. Mid-shelf reefs displayed moderate levels of all roles examined. The majority of this variation in functional roles was attributable to just two species. Despite being rare, Bolbometopon muricatum, the largest parrotfish species, accounted for 87.5% of the erosion and 99.5% of the coral predation on outer-shelf reefs. B. muricatum displayed little evidence of selectivity of feeding, with most substrata being consumed in proportion to their availability. In contrast, the high density of Scarus rivulatus accounted for over 70% of the total grazing and sediment reworking on inner-shelf reefs. This marked variation in the roles of parrotfishes across the continental shelf suggests that each shelf system is shaped by fundamentally different processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
A. Mysterud 《Oecologia》2000,124(1):40-54
Ecological segregation (sexual differences in diet or habitat use) in large herbivores has been intimately linked to sexual body size dimorphism, and may affect both performance and survival of the sexes. However, no one has tested comparatively whether segregation occurs at a higher frequency among more dimorphic species. To test this comparatively, data on sex-specific diet, habitat use and body size of 40 species of large herbivores were extracted from the literature. The frequency of ecological segregation was higher among more dimorphic herbivores; however, this was only significant for browsers. This provides the first evidence that segregation is more common among more dimorphic species. The comparative evidence supported the nutritional-needs hypothesis over the incisor breadth hypothesis, as there was no difference in frequency of segregation between seasons with high and low resource levels, and since segregation was also evident among browsers. Whether the absence of a correlation between ecological segregation and level of sexual body size dimorphism for intermediate feeders and grazers is due to biological differences relative to browsers or to the fact that the monomorphic species included in the analysis were all browsers is discussed. Received: 18 August 1999 / Accepted: 31 January 2000  相似文献   

3.
Freshwater cyclopoid copepods exhibit at least a fivefold range in somatic genome size and a mechanism, chromatin diminution, which could account for much of this interspecific variation. These attributes suggest that copepods are well suited to studies of genome size evolution. We tested the nucleotypic hypothesis of genome size evolution, which poses that variation in genome size is adaptive due to the bulk effects of both coding and noncoding DNA on cell size and division rates, and their correlates. We found a significant inverse correlation between genome size and developmental (growth) rate in five freshwater cyclopoid species at three temperatures. That is, species with smaller genomes developed faster. Species with smaller genomes had significantly smaller bodies at 22 °C, but not at cooler and warmer temperatures. Species with smaller genomes developed faster at all three temperatures, but had smaller bodies only at 22 °C. We propose a model of life history evolution that adds genome size and cell cycle dynamics to the suite of characters on which selection may act to mold life histories and to influence the distribution of traits among different habitats.  相似文献   

4.
Relationships between body size and abundance in collections of animals from the tanks of 73 bromeliads belonging to five species were analysed. Unlike data in previously published studies on this relationship, these collections of species are not taxonomically restricted and represent complete communities over the macroscopic range of organisms. There is no overall tendency for there to be a positive or negative relationship between population abundance and body size of morphospecies. We can find no evidence that body size-abundance patterns are triangular in complete communities. However, there is weak evidence that the relationship in the aquatic subsets of those communities may have some underlying triangularity, with medium-sized species having the largest populations.  相似文献   

5.
Bee foraging ranges and their relationship to body size   总被引:3,自引:0,他引:3  
Bees are the most important pollinator taxon; therefore, understanding the scale at which they forage has important ecological implications and conservation applications. The foraging ranges for most bee species are unknown. Foraging distance information is critical for understanding the scale at which bee populations respond to the landscape, assessing the role of bee pollinators in affecting plant population structure, planning conservation strategies for plants, and designing bee habitat refugia that maintain pollination function for wild and crop plants. We used data from 96 records of 62 bee species to determine whether body size predicts foraging distance. We regressed maximum and typical foraging distances on body size and found highly significant and explanatory nonlinear relationships. We used a second data set to: (1) compare observed reports of foraging distance to the distances predicted by our regression equations and (2) assess the biases inherent to the different techniques that have been used to assess foraging distance. The equations we present can be used to predict foraging distances for many bee species, based on a simple measurement of body size. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.  相似文献   

7.
Foraging theory predicts that dietary niche breadth should expand as resource availability decreases. However, Galápagos marine iguanas often die during algae shortages (El Niños) although land plants abound where they rest and reproduce. On Seymour Norte island, a subpopulation of iguanas exhibited unique foraging behavior: they consistently included the succulent beach plant B. maritima in their diet. We investigated the consequences of land-plant feeding for body size and survival. Batis-eaters supplemented their algae diet both before and after intertidal zone foraging, and more Batis was eaten during tides unfavorable for intertidal zone foraging (dawn and dusk). Larger, energy-constrained iguanas fed more on land than did smaller animals. Compared to intertidal zone algae, Batis was 39% lower in caloric content (1.6 vs. 2.6 kcal g–1 dry mass), 56% lower in protein (8.3 vs. 18.9% dry mass) and 57% lower in nitrogen (1.3 vs. 3.0% dry mass). In spite of its lower nutrient value, iguanas that supplemented their diet with this plant were able to attain nearly twice the body size of other iguanas on the island. Age estimates indicate that many Batis-eaters survived repeated El Niño episodes during which animals of their relative size-class experienced high mortality on other islands. The larger animals were, however, completely dependent upon this supplementary source of food to maintain condition, and all perished in the 1997–1998 El Niño when high tides inundated and killed Batis on Seymour Norte Island. We hypothesize that Batis feeding developed as a local foraging tradition, and that dietary conservatism and strong foraging site fidelity explain why the inclusion of land plants in the diet has been observed in only a single population. Ultimately, a unique algae-adapted hindgut morphology and physiology may limit a switch from marine to terrestrial diet.  相似文献   

8.
Graeme Caughley 《Oecologia》1987,74(2):319-320
Summary The frequency distributions of eutherian body weights given by Caughley and Krebs (1983) are here corrected for an algebraic error in that publication. The distributions for hervibores and omnivores combined and for carnivores and insectivores combined are bimodal, the trough for the first group lying between 25 and 35 kg and for the second between 0.1 and 0.3 kg. The trough within the distribution of weights for herbivores and omnivores combined has been suggested (Caughley and Krebs 1983) as dividing those species whose populations are regulated intrinsically from the larger species whose populations are regulated extrinsically.  相似文献   

9.
Summary Suspensions of collagen fibrils obtained from derma of Elasmobranchia and Actinopterygia of different body sizes and developmental stages were examined by transmission electron microscopy. Fibril diameters were measured and classified into groups comprising a 20 nm diameter interval. Diagrams showing fibril populations of each fish were made. The measurements were averaged and their confidence intervals and standard errors determined. For each species other diagrams were plotted in which the mean diameters were correlated to the body length of each sample. The results show that: 1) a correlation exists between an increase in diameter of collagen fibrils and somatic growth until sexual maturity is reached; 2) fibril populations are subsequently spread over a wider range due to the presence in the derma of classes of newly formed and therefore thinner fibrils. The deposition of new fibrils is possibly influenced by individual factors; 3) no relationship exists between mean fibril diameter and body size; 4) no relationship exists between phylogenetic position and pattern of diameter distribution.Research supported by a grant from C.N.R. Roma (69.02087.0115.1150)  相似文献   

10.
We compared the average body size (wing span) of Finnish geometrid moth species in relation to their degree of polyphagy and quality of food. The first hypothesis, originally constructed for mammals and birds, states that smaller species should more often be specialists than large species, because of the different relationships between body size and home range size, and body size and daily energy requirements. According to the second hypothesis, smaller species should feed more often on herbs than do larger species, because of the different defence mechanisms of herbs and woody plants. The results support both of these hypotheses. Specialist species are smaller than oligophagous or polyphagous species, and small species concentrate on herbs. We conclude that quality and quantity of food resources may explain the pattern.  相似文献   

11.
The frequency of multiple births, life history parameters, body size, and diet characteristics were obtained from the literature for 70 primate species. The general pattern within the primate order is to have single infant litters, yet multiple births regularly occur in a number of species in specific phylogenetic groups. Primates which have large litters tend to be small, have short gestation periods and give birth to small infants, which are weaned quickly, and mature rapidly. Species in which multiple births are common also have short interbirth intervals and in the Callitrichidae have males which exhibit paternal care. In addition, they are commonly insectivorous. Although it is difficult to isolate the effects of diet on litter size, independent of body size, analyses suggest that after the influence of body size is statistically removed, as the proportion of insects in the diet increases, animals have larger litters. We suggest that by adopting a mixed diet of insects and fruit primates may be able to ensure access to a seasonally stable food resource that is not greatly restricted by the presence of toxins. This diet would allow a relatively high metabolism and facilitate large litters.  相似文献   

12.
Measurements of body length (vertex to heel) were abstracted from the field notes of Pan and Gorilla specimens from the Powell-Cotton Museum. Bicondylar femur and humerus length were measured on each skeleton and correlation coefficients with body length were computed. In both the separate sex and the combined sex samples of Gorilla, and in the combined sex sample of Pan, long bone lengths are significantly correlated with body size, but in Pan only 20% of the variance in body length is reflected in the long bone measurements.  相似文献   

13.
A model relating relative size of the posterior teeth to diet is suggested for forest and savanna primates and Homo. Relative tooth size is calculated for the South African gracile australopithecine sample using posterior maxillary area sums and size estimates based on four limb bones. A number of limbs were shown to be non-hominid. Comparisons show the South African gracile sample apparently adapted to a very heavily masticated diet with relative tooth size significantly greater than any living hominoid. Periodic intensive utilization of grains and roots combined with scavenged animal protein are suggested as the most likely dietary reconstruction.  相似文献   

14.
Aim I examine the relationship between geographical range size and three variables (body size, an index of habitat breadth, and an index of local abundance) within a phylogenetic framework in North American species of suckers and sunfishes. Location North America Methods Regressions after independent contrasts of geographical range size, body size, habitat breadth, and local abundance. Results Species with large range sizes tend to be larger-bodied, be more locally abundant, and have higher habitat breadths. Character reconstructions support the prediction that variables associated with rarity (small geographical range size, low local abundance, low niche breadth, and large body size) evolve in unison, although large body size was associated with the opposite traits in these taxa. Gaston & Blackburn (1996a) suggested using visual identification of the lower boundary of the geographical range-body size relationship to identify extinction-prone species; this resulted in thirteen species that are potentially extinction-prone. Main conclusions Similar evolutionary mechanisms appear to operate on body size and other variables related to rarity, even in distantly related taxa.  相似文献   

15.
Håkan Sand 《Oecologia》1996,106(2):212-220
I examined the relationship between age, body size and fecundity in 833 female moose (Alces alces) from 14 populations in Sweden sampled during 1989–1992. Data on population density, food availability and climatic conditions were also collected for each population. Age and body mass were both significantly positively related to fecundity, measured as ovulation rate, among female moose. The relationship between the probability of ovulation and body mass was dependent on age with (1) a higher body mass needed in younger females for attaining a given fecundity, and (2) body mass having a stronger effect on fecundity in yearling (1.5 year) than in older (2.5 year) females. Thus, a 40 kg increase in yearling body mass resulted in a 42% increase in the probability of ovulation as compared to a 6% increase in older females. The lower reproductive effort per unit body mass, and the relatively stronger association between fecundity and body mass in young female moose compared to older ones, is likely to primarily represent a mechanism that trades off early maturation against further growth, indicating a higher cost of reproduction in young animals. In addition to age and body mass, population identity explained a significant amount of the individual variation in fecundity, showing that the relationship between body mass and fecundity was variable among populations. This variation was in turn related to the environment, in terms of climatic conditions forcing female moose living in relatively harsh/more seasonal climatic conditions to attain a 22% higher body mass to achive the same probability of multiple ovulation (twinning) as females living in climatically milder/less seasonal environments. The results suggests that the lower fecundity per unit body mass in female moose living in climatically harsh/more seasonal environments may be an adaptive response to lower rates of juvenile survival, compared to females experiencing relatively milder/less seasonal climatic conditions.  相似文献   

16.
Tooth areas correlate significantly with long bone measurements in a skeletal population of rhesus monkeys from Cayo Santiago. Correlations are relatively large for the troop as a whole, as well as for males and females separately. Femur and humerus length measurements show the highest correlations with tooth size.  相似文献   

17.
Aim There is substantial residual scatter about the positive range size–body size relationship in Australian frogs. We test whether species’ life history and abundance can account for this residual scatter. Location Australia. Methods Multiple regressions were performed using both cross‐species and independent contrasts analyses to determine whether clutch size, egg size and species abundance account for variation in range size over and above the effects of body size. Results In both cross‐species and independents contrasts models with body size, clutch size and egg size as predictors, partial r2 values revealed that only egg size was significantly and uniquely related to range size. Contrary to expectation, neither body size nor clutch size could account for significant variation in range size. Incorporating species abundance as a predictor in further multiple regression analysis demonstrated that while abundance accounted for a significant proportion of range size variation, the contribution of egg size was reduced but still significant. Notably, non‐significant relationships persisted between range size and both body size and clutch size. Conclusions The weak positive correlation between body size and range size in Australian frogs disappears after accounting for species abundance and egg size. Our findings demonstrate that species with both high local abundance and small eggs occupy comparatively wider geographical ranges than species with low abundance and large eggs.  相似文献   

18.
Manier DJ  Hobbs NT 《Oecologia》2007,152(4):739-750
Improving understanding of the connections between vegetation, herbivory, and ecosystem function offers a fundamental challenge in contemporary terrestrial ecology. Using exclosures constructed during the late 1950s, we examined effects of grazing by wild and domestic herbivores on plant community structure, aboveground herbaceous primary production, and nutrient cycling at six sites in semi-arid, sagebrush rangelands during 2001-2002 in Colorado, USA. Enclosures provided three treatments: no grazing, grazing by wild ungulates only, and grazing by wild and domestic ungulates. Excluding all grazing caused an increase in shrub cover (F = 4.97, P = 0.033) and decrease in bare ground (F = 4.74, P = 0.037), but also a decrease in plant species richness (F = 6.19, P = 0.018) and plant diversity (F = 7.93, P = 0.008). Effects of wild ungulate grazing on plant cover and diversity were intermediate to the effects of combined domestic and wild grazing. Aboveground net primary production was higher in both grazed treatments than in the ungrazed one (F(wild + domestic) = 2.98, P = 0.0936 and F(wild only) = 3.55, P = 0.0684). We were unable to detect significant effects of grazing on other ecosystem states and processes including C:N ratios of standing crops, N mineralization potential, or nitrification potential. Best approximating models revealed positive correlation between N availability and herbaceous cover and a negative correlation between herbaceous primary production and the ratio of shrub-herb cover and plant diversity. We conclude that ungulate herbivory, including both wild and domestic ungulates, had significant effects on plant community structure and ecosystem function during this 42-year span. Responses to the wild ungulate treatment were consistently intermediate to responses to the no grazing and wild + domestic grazing treatments. However, we were unable to detect statistical difference between effects of wild ungulates alone and wild ungulates in combination with livestock.  相似文献   

19.
The origins of sexual dimorphism in body size in ungulates   总被引:4,自引:0,他引:4  
Jarman (1974) proposed a series of relationships between habitat use, food dispersion, and social behavior and hypothesized a series of evolutionary steps leading to sexual dimorphism in body size through sexual selection in African antelope species. The hypothesis states that sexual size dimorphism evolved in a three-step process. Initially, ancestral monomorphic and monogamous ungulate species occupying closed habitats radiated into open grassland habitats. Polygynous mating systems then rapidly evolved in response to the aggregation of males and females, perhaps in relation to the clumped distribution of food resources in open habitats. Subsequently, size dimorphism evolved in those species occupying open habitats, but not in species that remained in closed habitats or retained monogamy. This hypothesis has played an important role in explaining the origins of sexual dimorphism in mammals. However, the temporal sequence of the events that Jarman proposed has never been demonstrated. Here we use a phylogeny of extant ungulate species, along with maximum-likelihood statistical techniques, to provide a test of Jarman's hypothesis.  相似文献   

20.
The aim of this field study was to investigate effects of estimated fish- and sea urchin herbivory on the reproductive potential of four species of macroalgae; Halimeda macroloba (Decasine), H. renschii (Hauck), Turbinaria ornata (Turner) and Padina boergesenii (Allender et Kraft). Fish and sea urchin herbivory were calculated based on reported consumption rates for their biomass estimates. We hypothesized that reduced herbivory would increase algal size and the reproductive potential, which may promote algal recruitment and be one of the driving mechanisms behind algal shifts and persistent algae-dominated reefs. Algae were investigated in field sites where the estimated fish- and or sea urchin herbivory differed. Our results suggest that algal fecundity of T. ornata and P. boergesenii are positively correlated to their size. Fecundity of T. ornata was higher and individuals grew larger in areas where estimated fish herbivory was lower. The two species of Halimeda grew larger and had higher fecundity in areas where estimated sea urchin herbivory was lower. P. boergesenii responded ambiguously to patterns in herbivory. Due to species-specific responses to different herbivores, it is difficult to generalize about effects of overfishing on algal fecundity. Handling editor: S. Wellekens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号