首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance of soybean [Glycine max (L.) Merr.] to cyst nematode (SCN) (Heterodera glycines Ichinohe), one of the most destructive pathogens affecting soybean, involves a complex genetic system. The identification of QTLs associated with SCN resistance may contribute to the understanding of such system. The objective of this work was to identify and map QTLs for resistance to SCN Race 14 with the aid of molecular markers. BC3F2:3 and F2:3 populations, both derived from an original cross between resistant cv. Hartwig and the susceptible line BR-92–31983 were screened for resistance to SCN Race 14. Four microsatellite (Satt082, Sat_001, Satt574 and Satt301) and four RAPD markers (OPAA-11795, OPAE-08837, OPR-07548 and OPY-072030) were identified in the BC3F2:3 population using the bulked segregant analysis (BSA) technique. These markers were amplified in 183 F2:3 families and mapped to a locus that accounts for more than 40% of the resistance to SCN Race 14. Selection efficiency based on these markers was similar to that obtained with the conventional method. In the case of the microsalellite markers, which identify homozygous resistant genotypes, the efficiency was even higher. This new QTL has been mapped to the soybean linkage group D2 and, in conjunction with other QTLs already identified for SCN resistance, will certainly contribute to our understanding of the genetic basis of resistance of this important disease in soybean. Received: 12 October 1999 / Accepted: 14 April 2000  相似文献   

2.
以前研究发现,辽宁地区大豆生长期间及收获期土壤中胞囊孵出的二龄幼虫量很少,推测线虫卵的休眠与大豆生长时期或季节相关。为明确该地区大豆胞囊线虫的休眠特点,2002-2003年采用田间随机多点取样、室内分离及模拟自然条件孵化等方法对大豆胞囊线虫的休眠进行深入研究。结果表明:在生长季节,感病品种辽豆10根围土壤中的白色雌虫、卵囊及褐色的胞囊均可孵出二龄幼虫,且孵化持续时间较长,第21d仍有幼虫孵出,白色雌虫及卵囊内的卵孵化率高于褐色胞囊;不同作物对其根围土壤中胞囊内卵的孵化影响不大,寄主作物大豆、非寄主作物玉米根围及休闲地土壤中的胞囊在条件适宜均可孵出二龄幼虫;季节对胞囊内卵的孵化有较大的影响,出苗期孵化率最高,收获期最低,2周时平均1个胞囊孵出幼虫分别为83.8和9.7条;胞囊皮对线虫卵的孵化有显著的影响。表明沈阳地区大豆胞囊线虫在正常和逆境条件下均有部分卵表现休眠。  相似文献   

3.
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as “syncytium highly connected hubs”, potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure–function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.  相似文献   

4.
大豆孢囊线虫(Heterodera glycines)是危害大豆生产的世界性病害。山西省兴县“灰布支黑豆”是对目前我国鉴定的所有流行小种表现出免疫或高抗的重要抗源。利用目前国际通用的一套鉴别寄主和小种划分标准,通过人工接种的方法,确定了14号是北京马连洼中国农业科学院植物保护研究所实验站土壤中大豆孢囊线虫群体的主导小种。用敏感的栽培品种“冀豆7号”作母本,与灰布支黑豆杂交,采用人工接种的方法,对后代群体进行大豆孢囊线虫14号小种的抗性鉴定。F1的2个单株都表现出抗性。随机取2个单株的F2代群体,分别测定每个群体的116和78个单株。每个群体都表现出43抗:21感的分离比例,支持兴县灰布支黑豆对大豆孢囊线虫14号小种的抗性是由3对基因控制、一对隐性基因对两对显性基因的上位和两对显性基因互补作用的遗传假设。随机取F3代的30个株系,每个株系随机测定10~15个单株。19抗:38分离:7感的株系间分离比确认上述的遗传假设是正确的。  相似文献   

5.
2-DE reference maps of Heterodera glycines were constructed. After in-gel digestion with trypsin, 803 spots representing 426 proteins were subsequently identified by LC-MS/MS. Proteins with annotated function were further categorized by Gene Ontology. The results showed that proteins involved in metabolic, developmental and biological regulation processes were the most abundant.  相似文献   

6.
【目的】了解黑龙江省大豆田大豆胞囊线虫胞囊可培养细菌的多样性。【方法】运用稀释平板法和16SrDNA基因序列的系统发育分析对胞囊可培养细菌多样性进行研究。【结果】用NA培养基从胞囊上分离90株具有不同菌落形态的细菌。16S rDNA序列分析结果表明:90株菌株分属于7个属22个种。46株属于变形菌门γ亚群(Gammaproteobacteria),32株属于厚壁菌门(Firmicutes),10株属于变形菌门β亚群(Betaproteobacteria),2株属于变形菌门ɑ亚群(Alphaproteobacteria)。假单胞菌属(Pseudomonas)和芽孢杆菌属(Bacillus)为优势菌属。【结果】黑龙江省大豆胞囊线虫胞囊中存在丰富的细菌物种多样性,这些细菌对大豆胞囊线虫可能具有一定的生理生态作用。  相似文献   

7.
 The restriction fragment length polymorphism (RFLP) clone pBLT65 is a 450-nt soybean cDNA encoding a portion of the bifunctional enzyme aspartokinase-homoserine dehydrogenase (AK-HSDH). pBLT65 maps within 3.5 cM of the i locus, conferring a pigmented seed coat, on linkage group A; hence, it is closely linked to the Rhg 4 locus conferring resistance to race 3 of the soybean cyst nematode. From this useful RFLP we developed a PCR reaction yielding polymorphic bands for use in marker-assisted breeding programs to select progeny containing the Rhg 4 allele. The polymorphic bands were sequenced to determine the cause of the polymorphisms. Using primers 548 and 563, PCR amplification of DNA from the soybean cultivar Peking (Rhg 4 ) yielded three DNA fragments, 1a (1160 bp), 1b (1146 bp) and 3 (996 bp). Amplification of DNA from the cultivar Kent (rhg 4) yielded DNA fragments 2 (1020 bp), 3 (996 bp) and 4 (960 bp). Fragments 1a, 1b, 2 and 4 were also polymorphic between the soybean lines PI 290136 and BARC-2(Rj 4 ). A segregating population of 80 F2 and F3 plants derived from the cross PI 290136×BARC-2 (Rj 4 ) was used to confirm the map position of the PCR polymorphisms near the i locus, and hence the Rhg 4 locus on linkage group A. The nucleotide sequences of fragments 1b, 3 and 4 were determined. Large and small deletions in the intronic region were responsible for the size differences of the different fragments, whereas the exon was well conserved. Received: 8 January 1998 / Accepted: 15 July 1998  相似文献   

8.
Root-knot nematodes (Meloidogyne spp.) can cause severe yield loss of soybean [Glycine max (L.) Merr.] in the southern production region of the USA. Planting root-knot nematode-resistant cultivars is the most effective method of preventing yield loss. DNA marker-assisted breeding may accelerate the development of root-knot nematode-resistant cultivars. RFLP markers have previously been used to identify quantitative trait loci (QTLs) conferring resistance to southern root-knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood] (Mi) in a F2:3 soybean population created by crossing the resistant PI96354 and the susceptible ’Bossier.’ A major QTL on linkage group (LG) O conditioning 31% of the variation in Mi gall number and a minor QTL on LG-G conditioning 14% of the gall variation were reported. With the development of SSR markers for soybean improvement, a higher level of mapping resolution and semi-automated detection has become possible. The objectives of this research were: (1) to increase the marker density in the genomic regions of the QTLs for Mi resistance on LG-O and LG-G with SSR markers; and (2) to confirm the effect of the QTLs in a second population and a different genetic background. With SSR markers, the QTL on LG-O was flanked by Satt492 and Satt358, and on LG-G by Satt012 and Satt505. Utilizing SSR markers flanking the two QTLs, marker-assisted selection was performed in a second F2:3 population of PI96354× Bossier. Results confirmed the effectiveness of marker-assisted selection to predict the Mi phenotypes. By screening the BC2F2 population of Prichard (3)×G93–9009 we confirmed that selection for the minor QTL on LG-G with flanking SSR markers would enhance the resistance of lines containing the major QTL (which is most-likely Rmi1). Received: 29 September 2000 / Accepted: 17 April 2001  相似文献   

9.
10.
Experiments were conducted in a greenhouse to evaluate soils for their degree of suppressiveness against the soybean cyst nematode, Heterodera glycines. The soils were collected in 2003 and 2004 from two fields with long-term soybean monoculture and one field with corn/soybean annual rotation. The soils were autoclaved, treated with formalin, or untreated. Both formalin and autoclave treatments removed suppressive factors and increased the nematode egg population density as compared with untreated soil. The mixture of 10% untreated soil with 90% treated soil resulted in similar nematode population densities as in the untreated soils collected from the two monoculture fields, indicating the suppressive factors were biological and can be transferred. The soils from the monoculture fields appeared to be more suppressive than the soil from the corn/soybean rotation. Hirsutella rhossiliensis was observed in all three soils, and parasitised a large percentage of second-stage juveniles of H. glycines in the monoculture soils in 2004. The fungus may be a major factor for the suppression of the nematode population, but in this study other biological factors cannot be ruled out.  相似文献   

11.
The soybean cyst nematode (SCN) (Heterodera glycines Inchinoe) is the most economically significant soybean pest. The principal strategy to reduce or eliminate damage from this pest is the use of resistant cultivars. Identifying resistant segregants in a breeding program is a difficult and expensive process which is complicated by the oligogenic nature of the resistance and genetic variability in the pathogen. Fortunately, resistance at one SCN-resistance locus, rhg1, is generally accepted as a necessity for the development of resistant genotypes using any source of resistance and when challenged by any SCN race. Thus, the development of SCN resistant cultivars would be expedited if an effective and rapid system were available to identify breeding lines carrying a resistance allele at the rhg1 locus. In this study we report two simple sequence repeat (SSR) or microsatellite loci that cosegregate and map 0.4 cM from rhg1. Allelic variation at the first of these loci, BARC-Satt309, distinguished most, if not all, SCN-susceptible genotypes from those carrying resistance at rhg1 derived from the important SCN-resistance sources ’Peking’, PI 437654, and PI 90763. BARC-Satt309 was also effective in distinguishing SCN resistance sources PI 88788 and PI 209332 from many, but not all, susceptible genotypes. BARC-Satt309 cannot be used in marker-assisted selection in populations developed from typical southern US cultivars crossed with the important resistance sources PI 88788 or PI 209332 because these genotypes all carry the identical allele at the BARC-Satt309 locus. A second SSR locus, BARC-Sat_168, was developed from a bacterial artificial chromosome (BAC) clone that was identified using the primers to BARC-Satt309. BARC-Sat_168 distinguished PI 88788 and PI 209332 from southern US cultivars such as ’Lee’, ’Bragg’ and ’Essex’. Both BARC-Satt309 and BARC-Sat_168 were used to assay lines from SCN-susceptible×SCN-resistant crosses and proved to be highly effective in identifying lines carrying rhg1 resistance from those carrying the allele for SCN susceptibility at the rhg1 locus. Received: 5 November 1998 / Accepted: 3 February 1999  相似文献   

12.
Resistance to the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is difficult to evaluate in soybean [Glycine max (L.) Merr.] breeding. PI 437.654 has resistance to more SCN race isolates than any other known soybean. We screened 298 F67 recombinant-inbred lines from a cross between PI 437.654 and BSR101 for SCN race-3 resistance, genetically mapped 355 RFLP markers and the I locus, and tested these markers for association with resistance loci. The Rhg 4 resistance locus was within 1 cM of the I locus on linkage group A. Two additional QTLs associated with SCN resistance were located within 3cM of markers on groups G and M. These two loci were not independent because 91 of 96 lines that had a resistant-parent marker type on group G also had a resistant-parent marker type on group M. Rhg 4 and the QTL on G showed a significant interaction by together providing complete resistance to SCN race-3. Individually, the QTL on G had greater effect on resistance than did Rhg 4, but neither locus alone provided a degree of resistance much different from the susceptible parent. The nearest markers to the mapped QTLs on groups A and G had allele frequencies from the resistant parent indicating 52 resistant lines in this population, a number not significantly different from the 55 resistant lines found. Therefore, no QTLs from PI 437.654 other than those mapped here are expected to be required for resistance to SCN race-3. All 50 lines that had the PI 437.654 marker type at the nearest marker to each of the QTLs on groups A and G were resistant to SCN race-3. We believe markers near to these QTLs can be used effectively to select for SCN race-3 resistance, thereby improving the ability to breed SCN-resistant soybean varieties.  相似文献   

13.
Allele-specific hybridization markers for soybean   总被引:3,自引:0,他引:3  
 Soybean (Glycine max) is one of the world’s most important crop plants due to extensive genetic improvements using traditional breeding approaches. Recently, marker-assisted selection has enhanced the ability of traditional breeding programs to improve soybeans. Most methods of assessing molecular markers involve electrophoretic techniques that constrain the ability to perform high-throughput analyses on breeding populations and germplasm. In order to develop a high-capacity system, we have developed allele-specific hybridization (ASH) markers for soybean. As one example, restriction fragment length polymorphism (RFLP) locus A519-1 (linkage group B) was converted into an ASH marker by (1) sequencing the pA519 cloned insert, (2) designing locus-specific PCR amplification primers, (3) comparative sequencing of A519-1 amplicons from important soybean ancestors, and (4) designing allele-specific oligonucleotide probes around single nucleotide polymorphisms (SNPs) among soybean genotypes. Two SNPs were identified within approximately 400 bp of the sequence. Allele-specific probes generated a 100-fold greater signal to target amplicons than to targets that differed by only a single nucleotide. The A519-1 ASH marker is shown to cosegregate with the A519-1 RFLP locus. In order to determine ASH usefulness, we genotyped 570 soybean lines from the Pioneer Hi-Bred soybean improvement using both A519-1 SNPs. Combined haplotype diversity (D) was 0.43 in this adapted germplasm set. These results demonstrate that ASH markers can allow for high-throughput screening of germplasm and breeding populations, greatly enhancing breeders’ capabilities to do marker-assisted selection. Received: 10 August 1998 / Accepted: 17 September 1998  相似文献   

14.
 The genetic structure of the rym5 locus was studied in a population comprising 391 doubled-haploid lines that were evaluated for resistance to two strains of Barley Yellow Mosaic Virus (BaYMV-1, 2) and to Barley Mild Mosaic Virus (BaMMV). The absence of recombinants that are able to differentiate between the reaction to these different bymoviruses provides evidence that rym5 is a complex locus, which is either composed of several closely linked genes or of an allelic series of a single gene. For marker-assisted introgression of this locus into adapted barley germplasm, a CAPS (cleaved amplified polymorphic sequence) and a microsatellite marker were developed that flank the gene at distances of 0.8 and 1.3% recombination, respectively. Received: 19 June 1998 / Accepted: 24 July 1998  相似文献   

15.
Germplasm line J87-233 is resistant to soybean cyst nematode (SCN) races 1, 2, 3, 5 and moderately resistant to race 14 with resistance derived from 3 primitive sources, Peking, PI 88788 and PI 90763. F2:3 progeny of J87-233 and SCN-susceptible Hutcheson cross were evaluated for response to SCN races 1, 2, 3, 5 and 14. Linkage groups (LG) A, B, F, G, J, M, N, S were tested with 215 genomic clones and 45 decamers for parental genotypes. QTL for race 1 and QTL for race 3 were detected on LG A2, the region of BLT65V and SCAR 548/5631100/1025,975. The cluster analysis of 12 soybean cultivars and 38 plant introductions confirmed association of SCAR1100/1025,975 with resistance to races 1 and 3, and suggested possible DNA rearrangements that might give rise to new resistance specificities in the region. The highly significant association of K69T marker with SCN race 1 resistance in conjunction with its location, 18.5 cM from the reported QTL, exemplifies the importance of the QTL locus on LG G and suggests expansion of the linkage map in the LG G-terminal region. Detected interaction between loci on LG A2 and LG G, and also with loci on LG F and LG M, may play a significant role in the genotype-specific response to SCN. Identification of two major regions on LG A2 and LG G for SCN resistance shows their applicability to advanced germplasm, however, transmission of molecular marker alleles indicates that applied markers are not yet reliable in revealing all possible recombination events in breeding for SCN resistance.  相似文献   

16.
大麦(Hordeum vulgare L.)是世界上重要的谷类作物之一,其二倍体特性使其成为麦类作物基因组研究的重要材料。随着大量分子标记图谱、BACs文库、突变集合和DNA阵列技术的应用,大麦基因组测序工作已不断深入,越来越多的大麦基因组信息使综合分析大麦基因组结构和功能,了解基因表达网络同重要农艺性状之间的关系成为可能。就大麦基因组研究内容,如ESTs系统、物理图谱的构建、功能基因组学研究和大麦分子育种研究作简要综述,为进一步阐述大麦基因组结构和功能特性,提高大麦分子育种能力提供理论依据。  相似文献   

17.
18.
 Two segregating populations for citrus tristeza virus (CTV) resistance derived from Poncirus trifoliata var ‘Flying Dragon’ by self-pollination and pollination to Citrus medica L. var ethrog ‘Arizona’ were inoculated with a common CTV isolate. The presence of virus was checked by the Double Antibody Sandwich Enzyme-Linked Assay and Direct Tissue Blot Inmunoassay at 3, 6, and 12 months after inoculation. Seven RAPDs were found linked to the CTV resistance gene by bulked segregant analysis. The closest linked RAPDs were cloned to obtain linked codominant RFLPs and to increase the precision of the genetic distance estimation. The CTV resistance gene seems to be located between cW18 and cK16. Differences in genetic distances among progenies are large and can be explained by genome-wide reduction in the recombination of progeny derived from male versus female gametes. Received: 5 June 1996 / Accepted: 26 July 1996  相似文献   

19.
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE‐receptor kinase‐WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant‐parasitic cyst nematodes secrete CLE‐like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR‐LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode‐induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock‐down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants.  相似文献   

20.
 Citrus tristeza virus (CTV) causes important economic losses in the citrus industry worldwide. Resistance to CTV is present in Poncirus trifoliata and is known to be controlled by a dominant gene at the Ctr locus. Short-distance movement of CTV around the inoculum, as well as passive movement through the phloem vessels, were studied in segregant plants derived by self-pollination from P. trifoliata var. “Flying Dragon” in order to genetically analyze the mechanism of CTV resistance. Accumulation of CTV in the vicinity of the inoculum and in new flushes was studied by means of a direct tissue-blot immunoassay (DTBIA). CTV is able to passively move with the phloematic flux from inoculated resistant genotypes Ctr-Rr and Ctr-RR up to a susceptible scion cultivar (Ctr-rr). Differences regarding CTV accumulation around the inoculum were found among Ctr-Rr individuals of the progeny. Bulked segregant analysis identified five RAPD markers linked to a locus (Ctm), or a genomic region, involved in short-distance accumulation of CTV but located in a different linkage group from Ctr. This result indicates that Ctr is not the only locus responsible for resistance to CTV in P. trifoliata, and that at least one other gene is involved. Given that citrus is a perennial crop, breeding for durable disease resistance should take into account selection at both the Ctr and Ctm loci. Received : 13 March 1996 / Accepted : 18 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号