首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A second collagenolytic serine protease has been isolated from the hepatopancreas of the fiddler crab, Uca pugilator. This enzyme cleaves the native triple helix of collagen under physiological conditions of pH, temperature, and ionic strength. In addition to its collagenolytic activity, the enzyme exhibits endopeptidase activity toward other polypeptides and small molecular weight synthetic substrates. The polypeptide bond specificity of this enzyme is similar to that of bovine trypsin as is its interaction with specific protease inhibitors. The amino-terminal sequence of this enzyme displays significant homology with other serine proteases, most notably with that of crayfish trypsin, and demonstrates that this enzyme is a member of the trypsin family of serine endopeptidases. The relatively unique action of this protease with regard to both collagenous and noncollagenous substrates has important implications concerning the specificity and mechanism of collagen degradation.  相似文献   

2.
H G Welgus  G A Grant 《Biochemistry》1983,22(9):2228-2233
The collagenolytic properties of a trypsin-like protease from the hepatopancreas of the fiddler crab Uca pugilator have been examined. All collagen types, I-V, were attacked by this enzyme. Types III and IV were degraded much more rapidly than types I, II, and V. Crab protease produced multiple cleavages in the triple helix of each collagen at 25 degrees C; only in the case of type III collagen, however, was a major cleavage observed at a 3/4:1/4 locus that corresponded to the region of collagen susceptibility to mammalian collagenase action. Additionally, both the affinity and the specific activity of the crab protease for native collagen were lower than those which characterize mammalian collagenase. The results of this study, in conjunction with a previous report on the collagenolytic activity of another serine protease from the fiddler crab [Welgus, H. G., Grant, G. A., Jeffrey, J. J., & Eisen, A. Z. (1982) Biochemistry 21, 5183], suggest that the following properties distinguish the action of these invertebrate collagenolytic enzymes from the metalloenzyme collagenases of mammals: (1) broad substrate specificity, including both noncollagenous proteins and collagen types I-V; (2) ability to cleave the native triple helix of collagen at multiple loci; (3) reduced affinity or higher Km for collagen; and (4) lower specific activity on collagen fibrils.  相似文献   

3.
4.
The substrate specificity of a plant serine protease, cucumisin (EC 3.4.21.25), was studied by the use of synthetic oligopeptides and peptidyl-pNA substrates. Since P1'-Ser, Ala, and Gly substrates were hydrolyzed rapidly, cucumisin appears to prefer a small side chain at the P1' position of the oligopeptide substrate. The k(cat)/Km for the hydrolysis of P1-Leu, Ala, Phe, and Glu substrates demonstrated that they were preferentially cleaved over P1-Lys, diaminopropionic acid (Dap), Gly, Val, and Pro substrates. From the digestion of peptidyl-pNAs, the specificity of the protease was determined to be broad, but the preferential cleavage sites were hydrophobic amino acid residues at the P1 position.  相似文献   

5.
Intracellular serine protease, termed ISP-103, was isolated from Bacillus subtilis, strain 103. The substrate specificity of the enzyme was compared to that of secretory subtilisins. Similar to subtilisins, ISP-103 cleaves a single peptide bond Ala20-Ser21 within the native pancreatic ribonuclease A, which results in the accumulation of trypsin-sensitive ribonuclease S, consisting of a non-covalently bound S-peptide (20 amino acid residues) and S-protein (104 amino acid residues). The enzyme hydrolyzes a single peptide bond Leu15-Tyr16 of the B-chain of oxidized bovine insulin, in contrast to the subtilisins cleaving four additional bonds. ISP prefers Leu rather than Phe in the P1 binding site of the rho-nitroanilide peptide substrates and shows a more strict dependence of the activity on the presence of the hydrophobic residues in the P2 and P3 sites. The data obtained indicate that the substrate specificity of ISP, being within the borders of subtilisin specificity, is nevertheless much more restricted.  相似文献   

6.
The substrate specificity of two isozymes of collagenolytic protease of the crab (Paralithodes camtschatica) was studied. It was found that both proteases can effectively hydrolyze type I and III collagens, as well as gelatin, the set of products yielded by enzymatic hydrolysis being different for isozymes A and C. Hydrolysis of some well-known peptides revealed that isozyme A predominantly cleaves the peptide bonds containing arginine and lysine residues, whereas isozyme C predominantly hydrolyzes bonds containing hydrophobic amino acids. The catalytic constants for the hydrolysis of several low molecular weight substrates in the presence of P. camtschatica proteases were determined, which allowed to attribute isozyme A to trypsin-like, and isozyme C to chymotrypsin-like proteinases. The peptide substrates of collagenase, Pz-Pro-Leu-Gly-Pro-D-Arg and Z-Gly-Pro-Ala-Gly-Pro-Ala are not hydrolyzed isozymes of crab collagenolytic protease.  相似文献   

7.
Two genomic DNA fragments encoding crustacean collagenolytic serine protease genes show coding fragments that span 1522-1526 base pairs and contain seven exons encoding the complete amino acid sequence of two enzymes, CHYA and CHYB. As in serine protease genes from other organisms, the region coding for the residues around the active site is split by two introns. Although the introns differ from those of other organisms in size and nucleotide sequence, their number and location are more or less the same as found in mammalian chymotrypsin or elastase genes that evolved lately, but different for trypsin genes. Meanwhile, the junction that occurs between the propeptide and the maturation site is only found in the shrimp genes. This is also the case for the junction located 13 amino acids after the active site aspartic acid in these genes. Between 40 and 50 copies of the genes are reported by Southern analysis. Seven different genes within ChyA Pv family present 0-6% base changes, whereas five different genes belonging to ChyB Pv family show changes of up to 27% in the short studied portion of exon 4. This last family presents a mosaic organization of the coding parts, which are also expressed in the hepatopancreas of the shrimp as the variant PVC5 cDNA.  相似文献   

8.
The substrate specificity of microbial transglutaminase (MTG) from Streptomyces mobaraensis (formerly categorized Streptoverticillium) was studied using a Streptomyces proteinaceous protease inhibitor, STI2, as a model amine-donor substrate. Chemical modification and mutational analysis to address the substrate requirements for MTG were carried out around the putative reactive site region of STI2 on the basis of the highly refined tertiary structure and the solvent accessibility index of Streptomyces subtilisin inhibitor, SSI, a homolog of STI2. The results suggest that the P1 reactive center site (position 70 of STI2) for protease subtilisin BPN' or trypsin may be the prime Lys residue that can be recognized by MTG, when succinylated beta-casein was used as a partner Gln-substrate. It is characteristic in that the same primary enzyme contact region of STI2 is shared by both enzymes, MTG and proteases. For quantitative analysis of the TG reaction, we established an ELISA-based monitoring assay system using an anti-SSI polyclonal antibody highly cross-reactive with STI2. Site-specific STI2 mutants were prepared by an Escherichia coli expression-secretion vector system and subjected to the assay system. We reached several conclusions concerning the nature of the flanking amino acid residues affecting the MTG reactivity of the substrate Lys residue: (i) site-specific mutations from Asn to Lys or Arg at position 69 preceding the amine-donor 70Lys, led to enhanced substrate reactivity; (ii) amino acid replacement at 67Ile with Ser led to higher substrate reactivity, (iii) additive effects were obtained by a combination of the positive mutations at positions 67 and 69 as described above, and (iv) Gly at position 65 might be essential for MTG reaction. Moreover, the substrate specificity of guinea pig liver tissue transglutaminase (GTG) was compared with that of MTG using STI2 and its mutants. In contrast to MTG, replacement of Gly by Asp at position 65 was the most favorable for substrate reactivity. Also, 70Lys appeared not to be a prime amine-donor site for GTG-mediated cross-linking, suggesting a difference in substrate recognition between MTG and GTG.  相似文献   

9.
A comparative study of the hydrolysis of various p-nitroanilide substrates (Z-A2-A1-pNA, Z-A3-A2-A1-pNA, and Z-A4-A3-A2-A1-pNA, where A1-An are various amino acid residues, Z is the benzoyloxycarbonylic group and pNA is the p-nitroanilide group), catalyzed by serine proteinase from Bacillus subtilis strain 72, was carried out. It was found that depending on the substrate structure, the hydrolysis may involve both the peptide-p-nitroaniline and the amino acid-amino acid bonds. A kinetic analysis of substrate hydrolysis occurring simultaneously at these two bonds was carried out. The physico-chemical meaning of the kinetic parameters of the given scheme was determined. The quantitative estimation of the enzyme specificity with respect to both hydrolyzing bonds can be found by using the parameters calculated during the analysis of the kinetic curve of p-nitroaniline production. It was found that according to their specificity the amino acid residues at position A1 can be arranged in the following order: L-Leu greater than P-Phe greater than L-Ile greater than L-Ala. The beta-branched amino acid residues, L-Val and L-Ile, do not bind to subsite S1. If these residues occupy position A1, the substrate splitting occurs exclusively between residues A1 and A2. The tetrapeptide N-protected p-nitroanilide substrates are also hydrolyzed at this bond. Partial hydrolysis of the amino acid-amino acid bond between residues A1 and A2 occurs in two cases: i) when residue A1 is loosely bound to subsite S1 and/or, ii) when residue A2 is firmly bound to subsite S1.  相似文献   

10.
The streptococcal pyrogenic exotoxin B (SpeB) is an important factor in mediating Streptococcus pyogenes infections. SpeB is the zymogen of the streptococcal cysteine protease (SCP), of which relatively little is known regarding substrate specificity. To investigate this aspect of SCP function, a series of internally quenched fluorescent substrates was designed based on the cleavage sites identified in the autocatalytic processing of SpeB to mature SCP. The best substrates for SCP contain three amino acids in the nonprimed position (i.e. AIK in P(3)-P(2)-P(1)). Varying the length of the substrate on the primed side of the scissile bond has a relatively lower effect on activity. The highest activity (k(cat)/K(M) = 2.8 +/- 0.6 (10(5) x m(-1)s(-1)) is observed for the pentamer 3-aminobenzoic acid-AIKAG-3-nitrotyrosine, which spans subsites S(3) to S(2)' on the enzyme. High pressure liquid chromatography and mass spectrometry analyses show that the substrates are cleaved at the site predicted from the autoprocessing experiments. These results show that SCP can display an important level of endopeptidase activity. Substitutions at position P(2) of the substrate clearly indicate that the S(2) subsite of SCP can readily accommodate substrates containing a hydrophobic residue at that position and that some topological preference exists for that subsite. Substitutions in positions P(3), P(1), and P(1)' had little or no effect on SCP activity. The substrate specificity outlined in this work further supports the similarity between SCP and the cysteine proteases of the papain family. From the data regarding the identified or proposed natural substrates for SCP, it appears that this substrate specificity profile may also apply to the processing of mammalian and streptococcal protein targets by SCP.  相似文献   

11.
12.
A DNA fragment of 163 bp containing 11 GGA repeats formed two-end positioned mononucleosomes as efficiently as that of CTG repeats. However, the rotational positioning of the GGA fragment was weak because clear DNase I cleavage patterns with 10-base periodicity were not seen near the center of the GGA fragment but were detected in the entire region of the CTG fragment. Incubation of the GGA mononucleosomes with the same fragment provided the DNA-DNA complex, which had been shown by using naked DNA fragments. DNase I digestion of the complex exhibited protection in the GGA repeats and in flanking sequences of about 30 bp at both sides, suggesting that both the repeat and flanking regions were involved in the association. Interestingly, histone H1, which enhanced DNA-DNA association on naked DNA, did not affect the complex formation on mononucleosomes. These results imply that GGA microsatellites in genomes could associate with one another at multiple sites and that the association may play a role in functional organization of higher order chromatin architecture.  相似文献   

13.
Regeneration of Walking Legs in the Fiddler Crab Uca pugilator   总被引:1,自引:0,他引:1  
SYNOPSIS. Regeneration of walking legs in the fiddler crab Ucapugilator is most efficient when it follows autotomy (the reflexiveloss of a limb). Closure of the wound and would healing occurimmediately following autotomy and visible regeneration beginswithin a few days. Regeneration of the walking leg occurs intwo distinct stages: The first stage, called Basal Growth, involvesmitosis and differentiation. The second stage involves primarilyprotein synthesis and water uptake and is called ProecdysialGrowth. Proecdysial Growth is, in part, under direct hormonalstimulation.  相似文献   

14.
15.
Comparison of the circulating steroids in the blood of crabslacking neurosecretory eyestalk centers and crabs with thosecenters intact (but lacking several walking legs) has revealeddifferences in vivo that can be attributed to eyestalk factors.It is concluded that eyestalk factors (including the putativemolt-inhibiting hormone, MIH): 1) exert control in vivo overproduction of 25-deoxyecdysone by the crab Y-organ, 2) controlcyclic steroid production throughout anecdysis and parts ofproecdysis and 3) are not solely responsible for the increasedsteroid production that occurs during late proecdysis. Usingthe data presented here and previously published data, a simplefeedback model for the control of Y-organ activity is proposed.The model suggests that the Y-organs of the crabUca pugilatorare modestly active during anecdysis but become further activatedduring late proecdysis. The increased activation requires morethan eyestalk removal and may involve additional extra-eyestalkfactors.  相似文献   

16.
17.
A novel microarray-based proteolytic profiling assay enabled the rapid determination of protease substrate specificities with minimal sample and enzyme usage. A 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized and microarrayed, along with fluorescent calibration standards, in glycerol nanodroplets on microscope slides. The arrays were then activated by deposition of an aerosolized enzyme solution, followed by incubation and fluorometric scanning. The specificities of human blood serine proteases (human thrombin, factor Xa, plasmin, and urokinase plasminogen activator) were examined. The arrays provided complete maps of protease specificity for all of the substrates tested and allowed for detection of cooperative interactions between substrate subsites. The arrays were further utilized to explore the conservation of thrombin specificity across species by comparing the proteolytic fingerprints of human, bovine, and salmon thrombin. These enzymes share nearly identical specificity profiles despite approximately 390 million years of divergent evolution. Fluorogenic substrate microarrays provide a rapid way to determine protease substrate specificity information that can be used for the design of selective inhibitors and substrates, the study of evolutionary divergence, and potentially, for diagnostic applications.  相似文献   

18.
19.
This paper reports a study to find small peptide substrates for the important virulence factor of Yersinia pestis, plasminogen activator, Pla. The method used to find small substrates for this protease is reported along with studies examining the ability of these peptides to inhibit activity of the enzyme. Through the use of parallel synthesis and positional scanning, small tripeptides were identified that are viable substrates for the protease.  相似文献   

20.
Escherichia coli OmpP is an F episome-encoded outer membrane protease that exhibits 71% amino acid sequence identity with OmpT. These two enzymes cleave substrate polypeptides primarily between pairs of basic amino acids. We found that, like OmpT, purified OmpP is active only in the presence of lipopolysaccharide. With optimal peptide substrates, OmpP exhibits high catalytic efficiency (k(cat)/K(m) = 3.0 x 10(6) M(-1)s(-1)). Analysis of the extended amino acid specificity of OmpP by substrate phage revealed that both Arg and Lys are strongly preferred at the P1 and P1' sites of the enzyme. In addition, Thr, Arg, or Ala is preferred at P2; Leu, Ala, or Glu is preferred at P4; and Arg is preferred at P3'. Notable differences in OmpP and OmpT specificities include the greater ability of OmpP to accept Lys at the P1 or P1', site as well as the prominence of Ser at P3 in OmpP substrates. Likewise, the OmpP P1 site could better accommodate Ser; as a result, OmpP was able to cleave a peptide substrate between Ser-Arg about 120 times more efficiently than was OmpT. Interestingly, OmpP and OmpT cleave peptides with three consecutive Arg residues at different sites, a difference in specificity that might be important in the inactivation of cationic antimicrobial peptides. Accordingly, we show that the presence of an F' episome results in increased resistance to the antimicrobial peptide protamine both in ompT mutants and in wild-type E. coli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号