首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endogenous methylarginines, asymmetric dimethylarginine (ADMA) and N (G)-monomethyl- l-arginine (L-NMMA) regulate nitric oxide (NO) production from endothelial NO synthase (eNOS). Under conditions of tetrahydrobiopterin (BH 4) depletion eNOS also generates (*)O 2 (-); however, the effects of methylarginines on eNOS-derived (*)O 2 (-) generation are poorly understood. Therefore, using electron paramagnetic resonance spin trapping techniques we measured the dose-dependent effects of ADMA and L-NMMA on (*)O 2 (-) production from eNOS under conditions of BH 4 depletion. In the absence of BH 4, ADMA dose-dependently increased NOS-derived (*)O 2 (-) generation, with a maximal increase of 151% at 100 microM ADMA. L-NMMA also dose-dependently increased NOS-derived (*)O 2 (-), but to a lesser extent, demonstrating a 102% increase at 100 microM L-NMMA. Moreover, the native substrate l-arginine also increased eNOS-derived (*)O 2 (-), exhibiting a similar degree of enhancement as that observed with ADMA. Measurements of NADPH consumption from eNOS demonstrated that binding of either l-arginine or methylarginines increased the rate of NADPH oxidation. Spectrophotometric studies suggest, just as for l-arginine and L-NMMA, the binding of ADMA shifts the eNOS heme to the high-spin state, indicative of a more positive heme redox potential, enabling enhanced electron transfer from the reductase to the oxygenase site. These results demonstrate that the methylarginines can profoundly shift the balance of NO and (*)O 2 (-) generation from eNOS. These observations have important implications with regard to the therapeutic use of l-arginine and the methylarginine-NOS inhibitors in the treatment of disease.  相似文献   

2.
In endothelium, NO is derived from endothelial NO synthase (eNOS)-mediated L-arginine oxidation. Endogenous guanidinomethylated arginines (MAs), including asymmetric dimethylarginine (ADMA) and NG-methyl-L-arginine (L-NMMA), are released in cells upon protein degradation and are competitive inhibitors of eNOS. However, it is unknown whether intracellular MA concentrations reach levels sufficient to regulate endothelial NO production. Therefore, the dose-dependent effects of ADMA and L-NMMA on eNOS function were determined. Kinetic studies demonstrated that the Km for L-arginine is 3.14 microM with a Vmax of 0.14 micromol mg-1 min-1, whereas Ki values of 0.9 microM and 1.1 microM were determined for ADMA and L-NMMA, respectively. EPR studies of NO production from purified eNOS demonstrated that, with a physiological 100 microM level of L-arginine, MA levels of >10 microM were required for significant eNOS inhibition. Dose-dependent inhibition of NO formation in endothelial cells was observed with extracellular MA concentrations as low 5 microm. Similar effects were observed in isolated vessels where 5 microm ADMA inhibited vascular relaxation to acetylcholine. MA uptake studies demonstrated that ADMA and L-NMMA accumulate in endothelial cells with intracellular levels greatly exceeding extracellular concentrations. L-arginine/MA ratios were correlated with cellular NO production. Although normal physiological levels of MAs do not significantly inhibit NOS, a 3- to 9-fold increase, as reported under disease conditions, would exert prominent inhibition. Using a balloon model of vascular injury, approximately 4-fold increases in cellular MAs were observed, and these caused prominent impairment of vascular relaxation. Thus, MAs are critical mediators of vascular dysfunction following vascular injury.  相似文献   

3.
Song Y  Cardounel AJ  Zweier JL  Xia Y 《Biochemistry》2002,41(34):10616-10622
Besides NO, neuronal NO synthase (nNOS) also produces superoxide (O(2)(-.) at low levels of L-arginine. Recently, heat shock protein 90 (hsp90) was shown to facilitate NO synthesis from eNOS and nNOS. However, the effect of hsp90 on the O(2)(-.) generation from NOS has not been determined yet. The interrelationship between its effects on O(2)(-.) and NO generation from NOS is also unclear. Therefore, we performed electron paramagnetic resonance measurements of O(2)(-.) generation from nNOS to study the effect of hsp90. Purified rat nNOS generated strong O(2)(-.) signals in the absence of L-arginine. In contrast to its effect on NO synthesis, hsp90 dose-dependently inhibited O(2)(-.) generation from nNOS with an IC(50) of 658 nM. This inhibition was not due to O(2)(-.) scavenging because hsp90 did not affect the O(2)(-.) generated by xanthine oxidase. At lower levels of L-arginine where marked O(2)(-.) generation occurred, hsp90 caused a more dramatic enhancement of NO synthesis from nNOS as compared to that under normal L-arginine. Significant O(2)(-.) production was detected from nNOS even at intracellular levels of L-arginine. Adding hsp90 prevented this O(2)(-.) production, leading to enhanced nNOS activity. Thus, these results demonstrated that hsp90 directly inhibited O(2)(-.) generation from nNOS. Inhibition of O(2)(-.) generation may be an important mechanism by which hsp90 enhances NO synthesis from NOS.  相似文献   

4.
Nitric oxide release from normal and dysfunctional endothelium.   总被引:7,自引:0,他引:7  
The endothelium plays a critical role in maintaining vascular tone by releasing vasoconstrictor and vasodilator substances. Endothelium - derived nitric oxide (NO) is a vasodilator rapidly inactivated by superoxide (O2-) found in significant quantities. The porphyrinic sensor (0.5-8 microm diameter) and chemiluminescence methods were used to measure NO and (O2-) respectively. Effects of hypertension, low density lipoprotein (LDL), and heart preservation on the release of NO and O2- were delineated. In the single endothelial cell (rat aorta) NO concentration was the highest in the cell membrane decreasing exponentially with distance from cell, and becoming undetectable beyond 50 microm and 25 microm for normotensive (WKY) and hypertensive (SHR) rats respectively. The endothelium of SHR released 40% less NO (300+/-25 nmol L(-1)) than that of normotensive rats (500+20 nmol L(-1)), due to the higher production of O2- in SHR rats. An exponentially decreasing NO production (from 1.20 +/- 0.15 to 0.16 +/- 0.05 micromol (L-1)) and concomitant increase of O2- generation (from 10 +/- 0.3 to 300 +/- 25 nmol L(-1) were observed in left ventricle of stored (eight hours) rabbit heart. Native and oxidized low density lipoproteins (nLDL and oxLDL) inhibited NO generation and increased O2- production. The local depletion of the L-arginine substrate may disarrange the nitric oxide synthase, leading to production of O2- from oxygen.  相似文献   

5.
A protein inhibitor of neuronal nitric oxide synthase (nNOS) was identified and designated as PIN. PIN was reported to inhibit nNOS activity in cell lysates through disruption of enzyme dimerization. However, there has been lack of direct characterization of the effect of PIN on NO production from purified nNOS. Furthermore, nNOS also generates superoxide (.O(2)(-)) at low levels of L-arginine. It is unknown whether PIN affects .O(2)(-) generation from nNOS. Therefore, we performed direct measurements of the effects of PIN on NO and .O(2)(-) generation from purified nNOS using electron paramagnetic resonance spin trapping techniques. nNOS was isolated by affinity chromatography and a fusion protein CBP-PIN was used to probe the effect of PIN. While the tag CBP did not affect nNOS activity, CBP-PIN caused a dose-dependent inhibition on both NO and L-citrulline production. In the absence of L-arginine, strong .O(2)(-) generation was observed from nNOS, and this was blocked by CBP-PIN in a dose-dependent manner. With low-temperature polyacrylamide gel electrophoresis, neither CBP nor CBP-PIN was found to affect nNOS dimerization. Thus, these results suggested that PIN not only inhibits NO but also .O(2)(-) production from nNOS, and this is through a mechanism other than decomposition of nNOS dimers.  相似文献   

6.
Uncoupling of nitric-oxide synthase (NOS) by deficiency of the substrate L-arginine or the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4) is known to generate the reactive oxygen species H2O2 and superoxide. Discrimination between these two compounds is usually achieved by spin trapping of superoxide. We measured superoxide formation by uncoupled rat neuronal NOS, which contained one equivalent of tightly bound BH4 per dimer, using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap. As expected, the Ca2+-stimulated enzyme exhibited reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity that was accompanied by generation of superoxide and H2O2 in the absence of added L-arginine and BH4. Addition of BH4 (10 microM) did not significantly affect the rate of H2O2 formation but almost completely inhibited the apparent formation of superoxide, suggesting direct formation of H2O2. Although L-arginine (0.1 mM) increased the rate of NADPH oxidation about two-fold, the substrate largely attenuated apparent formation of both superoxide and H2O2, indicating that the spin trap did not efficiently outcompete the reaction between NO and superoxide. The efficiency of DEPMPO to scavenge superoxide in the presence of NO was studied by measuring free NO with a Clark-type electrode under conditions of NO/superoxide cogeneration. Neuronal NOS half-saturated with BH4 and the donor compound 3-morpholinosydnonimine (SIN-1) were used as enzymatic and nonenzymatic sources of NO/superoxide, respectively. Neither of the two systems gave rise to considerable NO signals in the presence of 50-100 mM DEPMPO, and even at 400 mM the spin trap uncovered less than 50% of the NO release that was detectable in the presence of 5000 U/ml superoxide dismutase. These results indicate that DEPMPO and all other currently available superoxide spin traps do not efficiently outcompete the reaction with NO. In addition, the similar behavior of nNOS and SIN-1 provides further evidence for NO as initial product of the NOS reaction.  相似文献   

7.
Asymmetric dimethylarginine (ADMA) and NG-monomethyl- L-arginine ( L-NMMA) are important endogenous endothelial nitric oxide synthase (eNOS) inhibitors. Studies have shown that patients with insulin resistance have elevated plasma levels of ADMA. Moreover, ADMA levels have a prognostic value on long-term outcome of patients with coronary artery disease. Insulin resistance, a disorder associated to inadequate biological responsiveness to the actions of exogenous or endogenous insulin, is a metabolic condition, which exists in patients with cardiovascular diseases. This disorder affects the functional balance of vascular endothelium via changes of nitric oxide (NO) metabolism. Nitric oxide is produced in endothelial cells from the substrate L-arginine via eNOS. Elevated ADMA levels cause eNOS uncoupling, a mechanism which leads to decreased NO bioavailability and increased production of hydrogen peroxide. According to clinical studies, the administration of L-arginine to patients with high ADMA levels improves NO synthesis by antagonizing the deleterious effect of ADMA on eNOS function, although in specific populations such as diabetes mellitus, this might even been harmful. More studies are required in order to certify the role of NOS inhibitors in insulin resistance and endothelial dysfunction. It is still difficult to say whether increased ADMA levels in certain populations is only a reason or the result of the molecular alterations, which take place in vascular disease states.  相似文献   

8.
In this study, we investigated the molecular mechanisms of toxicity of 1-methyl-4-phenylpyridinium (MPP(+)), an ultimate toxic metabolite of a mitochondrial neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, that causes Parkinson-like symptoms in experimental animals and humans. We used rat cerebellar granule neurons as a model cell system for investigating MPP(+) toxicity. Results show that MPP(+) treatment resulted in the generation of reactive oxygen species from inhibition of complex I of the mitochondrial respiratory chain, and inactivation of aconitase. This, in turn, stimulated transferrin receptor (TfR)-dependent iron signaling via activation of the iron-regulatory protein/iron-responsive element interaction. MPP(+) caused a time-dependent depletion of tetrahydrobiopterin (BH(4)) that was mediated by H(2)O(2) and transferrin iron. Depletion of BH(4) decreased the active, dimeric form of neuronal nitric-oxide synthase (nNOS). MPP(+)-mediated "uncoupling" of nNOS decreased *NO and increased superoxide formation. Pretreatment of cells with sepiapterin to promote BH(4) biosynthesis or cell-permeable iron chelator and TfR antibody to prevent iron-catalyzed BH(4) decomposition inhibited MPP(+) cytotoxicity. Preincubation of cerebellar granule neurons with nNOS inhibitor exacerbated MPP(+)-induced iron uptake, BH(4) depletion, proteasomal inactivation, and apoptosis. We conclude that MPP(+)-dependent aconitase inactivation, Tf-iron uptake, and oxidant generation result in the depletion of intracellular BH(4), leading to the uncoupling of nNOS activity. This further exacerbates reactive oxygen species-mediated oxidative damage and apoptosis. Implications of these results in unraveling the molecular mechanisms of neurodegenerative diseases (Parkinson's and Alzheimer's disease) are discussed.  相似文献   

9.
We examined whether endogenous inhibitors of nitric oxide (NO) synthesis are involved in the impaired cavernosal relaxation with ischemia in rabbits. Two weeks after cavernosal ischemia caused by partial vessel occlusion, endothelium-dependent and electrical field stimulation (EFS)-induced neurogenic NO-mediated relaxations, but not sodium nitroprusside (SNP)-induced relaxation, were significantly impaired in the isolated corpus cavernosum. The Ca(2+)-dependent NO synthase (NOS) activity and the basal and stimulated cGMP productions with carbachol or EFS were significantly decreased after ischemia. Supplementation of excess L-arginine partially recovered both of the impaired relaxations. The contents of N(G)-monomethyl-L-arginine (L-NMMA) and asymmetric N(G), N(G)-dimethyl-L-arginine (ADMA) but not L-arginine and symmetric N(G),N'(G)-dimethyl-L-arginine (SDMA) were increased in the cavernosal tissues after ischemia. Authentic L-NMMA and ADMA but not SDMA concentration dependently inhibited both relaxations without affecting the relaxation produced by SNP in the control. Excess L-arginine abolished the inhibition with L-NMMA and ADMA. These results suggest that the impaired NO-mediated cavernosal relaxations after ischemia are closely related to the decreased NOS activity and the increased accumulation of L-NMMA and ADMA.  相似文献   

10.
11.
Palumbo A  d'Ischia M  Cioffi FA 《FEBS letters》2000,485(2-3):109-112
2-thiouracil (TU), an established antithyroid drug and melanoma-seeker, was found to selectively inhibit neuronal nitric oxide synthase (nNOS) in a competitive manner (K(i)=20 microM), being inactive on the other NOS isoforms. The drug apparently interfered with the substrate- and tetrahydrobiopterin (BH(4))-binding to the enzyme. It caused a 60% inhibition of H(2)O(2) production in the absence of L-arginine and BH(4), and antagonised BH(4)-induced dimerisation of nNOS, but did not affect cytochrome c reduction. These results open new perspectives in the understanding of the antithyroid action of TU and provide a new lead structure for the development of selective nNOS inhibitors to elucidate the interdependence of the substrate and pteridine sites and to modulate pathologically aberrant NO formation.  相似文献   

12.
Generation of superoxide by purified brain nitric oxide synthase.   总被引:39,自引:0,他引:39  
Brain nitric oxide synthase (NOS), which utilizes NADPH and calcium/calmodulin as cofactors for metabolizing L-arginine to nitric oxide (NO) and L-citrulline, contains recognition sites for the flavins FAD and FMN. Using a spin-trapping technique combined with electron spin resonance spectroscopy, we report that brain NOS generates superoxide O2-. in a calcium/calmodulin-dependent manner. The "specific inhibitors" of NOS, NG-monomethyl L-arginine (L-NMMA), and NG-nitro-L-arginine methyl ester (L-NAME), have different effects on O2-. generation. For L-NMMA, O2-. production is unaffected, while for L-NAME, inhibition of this free radical is concentration-dependent.  相似文献   

13.
Reactive nitrogen species (RNS) and oxygen species (ROS) have been reported to modulate the function of nitric oxide synthase (NOS); however, the precise dose-dependent effects of specific RNS and ROS on NOS function are unknown. Questions remain unanswered regarding whether pathophysiological levels of RNS and ROS alter NOS function, and if this alteration is reversible. We measured the effects of peroxynitrite (ONOO-), superoxide (O2.-), hydroxyl radical (.OH), and H2O2 on nNOS activity. The results showed that NO production was inhibited in a dose-dependent manner by all four oxidants, but only O2.- and ONOO- were inhibitory at pathophysiological concentrations (50muM). Subsequent addition of tetrahydrobiopterin (BH4) fully restored activity after O2.- exposure, while BH4 partially rescued the activity decrease induced by the other three oxidants. Furthermore, treatment with either ONOO- or O2.- stimulated nNOS uncoupling with decreased NO and enhanced O2.- generation. Thus, nNOS is reversibly uncoupled by O2.- (50muM), but irreversibly uncoupled and inactivated by ONOO-. Additionally, we observed that the mechanism by which oxidative stress alters nNOS activity involves not only BH4 oxidation, but also nNOS monomerization as well as possible degradation of the heme.  相似文献   

14.
Huang L  Abu-Soud HM  Hille R  Stuehr DJ 《Biochemistry》1999,38(6):1912-1920
The neuronal NO synthase (nNOS) heme binds self-generated NO, and this negatively regulates NO synthesis. Here we utilized the nNOS oxygenase domain and full-length nNOS along with various spectroscopic methods to (1) study formation of the six-coordinate ferrous NO complex and its conversion to a five-coordinate NO complex and (2) investigate the spectral and catalytic properties of the five-coordinate NO complex following its air oxidation to a ferric enzyme. NO bound quickly to ferrous nNOS oxygenase to form a six-coordinate NO complex (kon and koff values of 1.25 x 10(-)3 mM-1 s-1 and 128 s-1 at 10 degreesC, respectively) that was stable in the presence of L-arginine or tetrahydrobiopterin (BH4) but was converted to a five-coordinate NO complex in a biphasic process (k = 0.1 and 0.01 s-1 at 10 degreesC) in the absence of these molecules. Air oxidation of the ferrous six-coordinate NO complex generated an enzyme with full activity and ferrous-CO Soret absorbance at 444 nm. In contrast, oxidation of the five-coordinate NO complex generated an inactive dimer with ferrous-CO Soret absorbance at 420 nm, indicating nNOS was converted to a ferric P420 form. Incubation of ferric P420 nNOS with BH4 alone or BH4 and L-arginine resulted in time-dependent reactivation of catalysis and associated recovery of P450 character. Thus, nNOS is a heme-thiolate protein that can undergo a reversible P450-P420 conversion. BH4 has important roles in preventing P420 formation during NO synthesis, and in rescuing P420 nNOS.  相似文献   

15.
The binding of calcium/calmodulin stimulates electron transfer between the reductase and oxygenase domains of neuronal nitric oxide synthase (nNOS). Here, we demonstrate using electron spin resonance spin-trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide that pterin-free nNOS generates superoxide from the reductase and the oxygenase domain by a calcium/calmodulin-dependent mechanism. Tetrahydrobiopterin (BH(4)) diminishes the formation of superoxide by a mechanism that does not cause inhibition of NADPH consumption. In contrast, BH(4) analogs 7,8-dihydrobiopterin and sepiapterin do not affect superoxide yields. L-Arginine alone inhibits the generation of superoxide by nNOS but not by C331A-nNOS mutant that has a low affinity for L-arginine. A greater decrease in superoxide yields is observed when nNOS is preincubated with L-arginine. This effect is in accordance with the slow binding rates of L-arginine to NOS in the absence of BH(4). L-Arginine alone or in combination with BH(4) decreases the rates of NADPH consumption. The effect of L-arginine on superoxide yields, however, was less dramatic than that caused by BH(4) as much higher concentrations of L-arginine are necessary to attain the same inhibition. In combination, L-arginine and BH(4) inhibit the formation of superoxide generation and stimulate the formation of L-citrulline. We conclude that, in contrast to L-arginine, BH(4) does not inhibit the generation of superoxide by controlling electron transfer through the enzyme but by stimulating the formation of the heme-peroxo species.  相似文献   

16.
Phytanic acid (Phyt) increase is associated with the hereditary neurodegenerative Refsum disease. To elucidate the still unclear toxicity of Phyt, mitochondria from brain and heart of adult rats were exposed to free Phyt. Phyt at low micromolar concentrations (maximally: 100 nmol/mg of protein) enhances superoxide (O(2)(.))(2) generation. Phyt induces O(2)(.) in state 3 (phosphorylating), as well as in state 4 (resting). Phyt stimulates O(2)(.) generation when the respiratory chain is fed with electrons derived from oxidation of glutamate/malate, pyruvate/malate, or succinate in the presence of rotenone. With succinate alone, Phyt suppresses O(2)(.) generation caused by reverse electron transport from succinate to complex I. The enhanced O(2)(.) generation by Phyt in state 4 is in contrast to the mild uncoupling concept. In this concept uncoupling by nonesterified fatty acids should abolish O(2)(.) generation. Stimulation of O(2)(.) generation by Phyt is paralleled by inhibition of the electron transport within the respiratory chain or electron leakage from the respiratory chain. The interference of Phyt with the electron transport was demonstrated by inhibition of state 3- and p-trifluoromethoxyphenylhydrazone (FCCP)-dependent respiration, inactivation of the NADH-ubiquinone oxidoreductase complex in permeabilized mitochondria, decrease in reduction of the synthetic electron acceptor 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide in state 4, and increase of the mitochondrial NAD(P)H level in FCCP-uncoupled mitochondria. Thus, we suggest that complex I is the main site of Phyt-stimulated O(2)(.) generation. Furthermore, inactivation of aconitase and oxidation of the mitochondrial glutathione pool show that enhanced O(2)(.) generation with chronic exposure to Phyt causes oxidative damage.  相似文献   

17.
Reduced NO is a hallmark of endothelial dysfunction, and among the mechanisms for impaired NO synthesis is the accumulation of the endogenous nitric-oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Free ADMA is actively metabolized by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH), which catalyzes the conversion of ADMA to citrulline. Decreased DDAH expression/activity is evident in disease states associated with endothelial dysfunction and is believed to be the mechanism responsible for increased methylarginines and subsequent ADMA-mediated endothelial nitric-oxide synthase impairment. Two isoforms of DDAH have been identified; however, it is presently unclear which is responsible for endothelial ADMA metabolism and NO regulation. The current study investigated the effects of both DDAH-1 and DDAH-2 in the regulation of methylarginines and endothelial NO generation. Results demonstrated that overexpression of DDAH-1 and DDAH-2 increased endothelial NO by 24 and 18%, respectively. Moreover, small interfering RNA-mediated down-regulation of DDAH-1 and DDAH-2 reduced NO bioavailability by 27 and 57%, respectively. The reduction in NO production following DDAH-1 gene silencing was associated with a 48% reduction in l-Arg/ADMA and was partially restored with l-Arg supplementation. In contrast, l-Arg/ADMA was unchanged in the DDAH-2-silenced cells, and l-Arg supplementation had no effect on NO. These results clearly demonstrate that DDAH-1 and DDAH-2 manifest their effects through different mechanisms, the former of which is largely ADMA-dependent and the latter ADMA-independent. Overall, the present study demonstrates an important regulatory role for DDAH in the maintenance of endothelial function and identifies this pathway as a potential target for treating diseases associated with decreased NO bioavailability.  相似文献   

18.
We have recently demonstrated that endogenous H2O2 plays an important role in coronary autoregulation in vivo. However, the role of H2O2 during coronary ischemia-reperfusion (I/R) injury remains to be examined. In this study, we examined whether endogenous H2O2 also plays a protective role in coronary I/R injury in dogs in vivo. Canine subepicardial small coronary arteries (>or=100 microm) and arterioles (<100 microm) were continuously observed by an intravital microscope during coronary I/R (90/60 min) under cyclooxygenase blockade (n=50). Coronary vascular responses to endothelium-dependent vasodilators (ACh) were examined before and after I/R under the following seven conditions: control, nitric oxide (NO) synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA), catalase (a decomposer of H2O2), 8-sulfophenyltheophylline (8-SPT, an adenosine receptor blocker), L-NMMA+catalase, L-NMMA+tetraethylammonium (TEA, an inhibitor of large-conductance Ca2+-sensitive potassium channels), and L-NMMA+catalase+8-SPT. Coronary I/R significantly impaired the coronary vasodilatation to ACh in both sized arteries (both P<0.01); L-NMMA reduced the small arterial vasodilatation (both P<0.01), whereas it increased (P<0.05) the ACh-induced coronary arteriolar vasodilatation associated with fluorescent H2O2 production after I/R. Catalase increased the small arterial vasodilatation (P<0.01) associated with fluorescent NO production and increased endothelial NOS expression, whereas it decreased the arteriolar response after I/R (P<0.01). L-NMMA+catalase, L-NMMA+TEA, or L-NMMA+catalase+8-SPT further decreased the coronary vasodilatation in both sized arteries (both, P<0.01). L-NMMA+catalase, L-NMMA+TEA, and L-NMMA+catalase+8-SPT significantly increased myocardial infarct area compared with the other four groups (control, L-NMMA, catalase, and 8-SPT; all, P<0.01). These results indicate that endogenous H2O2, in cooperation with NO, plays an important cardioprotective role in coronary I/R injury in vivo.  相似文献   

19.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   

20.
We studied mesenteric arterial arcades from 3- and 35-day-old swine to determine the relationship between perfusate flow rate and release of nitric oxide (NO) into mesenteric effluent. Mesenteric arterial arcades were perfused under controlled-flow conditions with a peristaltic pump using warm oxygenated Krebs buffer. Basal rates of NO production were 43.6 +/- 4.2 vs. 12.1 +/- 2.5 nmol/min in 3- vs. 35-day-old mesentery during perfusion at in vivo flow rates (9 vs. 20 ml/min, respectively). Rate of NO production was directly related to flow rate over a wide range of flows (5-40 ml/min) in 3- but not 35-day-old mesentery. Both age groups demonstrated a brisk, albeit brief, increase in NO production in response to infusion of NO-dependent vasodilator substance P (10(-8) M/min). Tyrosine kinase inhibitor herbimycin A and L-arginine analog L-NMMA significantly attenuated flow-induced increase in NO production, and phosphatase inhibitor phenylarsine oxide increased magnitude of flow-induced increase in NO production in 3-day-olds. Removal of extracellular Ca(2+) and depletion of intracellular Ca(2+) stores (Ca(2+)-free Krebs with EGTA plus thapsigargin) had no effect on NO production in either group. Thus, basal rate of NO production is greater in mesenteric arterial arcades from 3- than from 35-day old swine, a direct relationship between flow rate and NO production rate is present in mesentery from 3- but not 35-day-olds, and phosphorylation events are necessary for this interaction to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号